Are Australian Vehicles Getting Bigger?

ABC Radio Sydney called me and asked essentially:

`Are Australian Cars Getting Bigger?’

The short answer is ‘No.’

AustralianNewCarMarket.003

Using data from the Federal Chamber of Automotive Industries that was once freely available online, and is now behind a paywall, I have produced graphs illustrating the Australian vehicle market.  The data show among the passenger cars: medium, small, light, and micro are all gaining in proportion of passenger cars, rising from half the passenger car market to 83% since 2000.

But

`Are Australian Vehicles Getting Bigger?’

The answer here is ‘Yes.’

As will be no surprise to Australians, or North Americans (See Canada data), the share of Sports Utility Vehicles has exploded since the beginning of the Millennium from about 13% to 39%, and now more SUVs are sold each year than passenger cars.

AustralianNewCarMarket.001

AustralianNewCarMarket.002

This trend, which mirrors that in the US, helps explain Ford’s recent decision to exit most of the passenger car business in the US.

Now 50%  of 70% is 35% (small cars share of all vehicles in 2000) while 80% of 38% is 30% (small cars share of all vehicles in 2017), so the share of small and medium cars of all vehicles is falling. But the total market of vehicles sold in Australia is still increasing from 787,000 in 2000 to 1,189,116 in 2017, and 30% of cars sold in 2017 is more than 35% of cars sold in 2000, so there are still more in terms of total number of small and medium cars sold in 2017 in total than 2000, even if it is a declining share of the market.

The Australian government also conducts a Motor Vehicle Census and just as the number of new cars sold each year rises with population growth, the total number of vehicles is also rising. This differs from the US, which has more or less peaked in cars per capita, and perhaps cars. I graphed this data for NSW for selected years (this data, is also, inconveniently, not in one place)

AustralianNewCarMarket.005

The reason for more SUVs vs. large cars are speculative. That is, why do people now prefer SUVs and not station wagons or big cars? It’s not as if people actually do a lot of off-road driving.

One is the idea of the extreme trip. Sometimes (say once a year or even once a month) a very large car would be useful. So instead of renting the specific vehicle when they want it, SUV-owners buy the vehicle they would use 1% of the their trips (or 0.05% of their time – since cars are only used 5% of the day anyway, and at rest the remainder, sleeping more than even cats), but which is too large 99.95% of the time.

One answer is the car Arms Race. In a taller car, the driver can see farther ahead (drivers are less likely to have their view obscured), which lets tall vehicle drivers anticipate better. It makes drivers feel safer, which they are for themselves, even when they are not for others.

More people are killed because of SUVs and light trucks, in the US, Michelle White estimated in 2004 “For each 1 million light trucks that replace cars, between 34 and 93 additional car occupants, pedestrians, bicyclists, or motorcyclists are killed per year, and the value of the lives lost is between $242 and $652 million per year.” Presumably the same logic holds in Australia.

Increasing the mass of vehicles on the road doesn’t do society any favours from an energy consumption, or air pollution perspective either. And of course, larger vehicles use more space, consuming more land in parking lots (which are now often restriped to accommodate more massive vehicles) and roads, where the width of lane consumed by larger cars rises, providing less manoeuvrability for other cars.

With the rise of autonomous vehicles, and especially vehicle sharing, the right sized vehicle will be summonable by app, so when travelers need the specific type of car for a large trip with many people, they can get it. The rest of the time, drivers will be able to use a car fit for purpose, one that holds one person for a one-person trip, and two people for two-person trips, and so on. This opens up the potential for skinny cars, enclosed electric cycles, and many other appropriate vehicles, which take up less road space, making it even easier to improve the environment for other road users, including walkers and bicyclists.

Toyota iRoad one-passenger concept cars, image courtesy Toyota.
Toyota iRoad one-passenger concept cars, image courtesy Toyota.

DEFINITIONS:

Passenger Motor Vehicles Passenger vehicles are classified dependent on size, specification and average retail pricing. Selected vehicle types will be assessed on footprint defined as length (mm) x width (mm), rounded, as follows:
Sports Utility Vehicles Vehicles classified as Sport Utility Vehicles (SUV) meet the FCAI criteria for classifying SUV vehicles based on a 2/4 door wagon body style and elevated ride height. Vehicles typically will feature some form of 4WD or AWD, however, where a 2WD variant of a model is available it will be included in the appropriate segment to that model.
Light Trucks Vehicles designed principally for commercial but may include designs intended for non-commercial applications.
Heavy Trucks Vehicles designed for exclusive heavy commercial application.

Car sizes:

Micro Hatch, sedan or wagon with a footprint < 6,300
Light Hatch, sedan or wagon with a footprint range 6,301 – 7,500
Small Hatch, sedan or wagon with a footprint range 7,501 – 8,300
Medium Hatch, sedan or wagon with a footprint range 8,301 – 9,000
Large Hatch, sedan or wagon with a footprint range 9,001 – 9,500
Upper Large Hatch, sedan or wagon with a footprint range 9,501 >
People Movers Wagon for passenger usage, seating capacity > 5 people
Sports Car, coupe, convertible or roadster

SUV Sizes:

Light Duty 3,501 – 8,000kg GVM
Medium Duty => 8,001kg GVM & GCM < 39,001
Heavy Duty 8,001kg GVM & GCM > 39,000

Light Truck Sizes:

Light bus < 20 Seats 8+ seats, but less than 20 seats
Light Bus > 20 Seats 20+ seats
Vans/CC <= 2.5t Blind/Window vans and Cab Chassis <= 2.5t GVM
Vans/CC > 2.5–3.5t Blind/Window vans and Cab Chassis between 205 and 3.5 tonnes GVM
Pick-up / Chassis 4×2 Two driven wheels, normal control (bonnet), utility, cab chassis, one and a half cab and crew cab
Pick-up / Chassis 4×4  Four driven wheels, normal control (bonnet), utility, cab chassis, one and a half cab and crew cab

Heavy Truck Sizes:

Light Duty 3,501 – 8,000kg GVM
Medium Duty => 8,001kg GVM & GCM < 39,001
Heavy Duty 8,001kg GVM & GCM > 39,000

Australian License Plates

In the era before widespread electronics, the common activity for kids in backseat of a car during a road trip was to collect license plates. At some point I had a sticker book with plates for each US state, and when I saw a new out of state plate, I transferred the sticker to the appropriate page. This sticker book is long gone.

You could learn about the country that way, in a sense there was a spatial distribution following a gravity like process. Maryland came first, followed by nearby states like Virginia and Pennsylvania, and DC. Texas or California would come up occasionally, though not as often as New York. But finding an Hawaii or Alaska plate was practically impossible.

Australia is simpler, with fewer plates, and on one stretch of road in Sydney, I scored a bunch. In short I learned

  • New South Wales is the First State (Sorry Delaware)
  • Western Australia is the Golden State (Sorry California)
  • Queensland is the Sunshine State (Sorry South Dakota)
  • Victoria is the Education State. It used to be the Garden State (Sorry New Jersey)

I did not see Tasmania (Explore the Possibilities), South Australia (The Festival State), Northern Territory (Outback Australia), or ACT (Canberra – The Nation’s Capital) here, but everything you ever wanted to know about Australian Vehicle Registration plates can be found at wikipedia. The designs and slogans change over time. None are as cool as DC’s Taxation without Representation plates.

I will just say, some of the newer US plates are far more attractive.

Sales of Electric Vehicles | The End of Traffic and the Future of Transport

In the early 2000s, Hybrid-Electric Vehicles (HEVs) started to become visible (especially in California), overcoming the range concerns as  electric power would be used on city streets, and the ICE could recharge the battery, at somewhat higher sales price than conventional vehicles. As shown in Figure 5.1, US sales are generally rising, but are still small for Hybrids and Electric Vehicles.  Sales outside the US are similarly low.   From Levinson and Krizek (2015) The End of Traffic and the Future of Transport. http://davidlevinson.org/the-end-of-traffic-and-the-future-of-transport/    Figure 5.1 Source: Electric Drive Transportation Association (2015) Electric Drive Sales Dashboard http://electricdrive.org/index.php?ht=d/sp/i/20952/pid/20952.
In the early 2000s, Hybrid-Electric Vehicles (HEVs) started to become visible (especially in California), overcoming the range concerns as electric power would be used on city streets, and the ICE could recharge the battery, at somewhat higher sales price than conventional vehicles. As shown in Figure 5.1, US sales are generally rising, but are still small for Hybrids and Electric Vehicles. Sales outside the US are similarly low.
From Levinson and Krizek (2015) The End of Traffic and the Future of Transport
Figure 5.1 Source: Electric Drive Transportation Association (2015) Electric Drive Sales Dashboard .

Riding in a Tesla with AutoPilot (2015)

In the Fall of 2015, the electric vehicle maker Tesla remotely upgraded its most recent model year cars (about 50,000 vehicles) with “Auto-Pilot”, making them semi-autonomous (according the NHTSA scale, late Level 2, early Level 3). Elon Musk, the CEO of Tesla, says he expects fully autonomous vehicles within 3 years (i.e. by 2018). I got to take a test ride in one of these vehicles from a friend with a Tesla.

Tesla Model S
Tesla Model S

Upgraded Teslas are able to function in hands-off mode some of the time. They use adaptive cruise control to follow the vehicle in front at a desired speed constrained by a fixed following distance and use lane markings to stay in lane. They change lanes automatically at the request of the driver (who must hit the turn signal).

Tesla Model S User Interface
Tesla Model S User Interface

How it works

As of Fall 2015, none of these functions can be safely performed in a Tesla running “Auto-Pilot” in the absence of driver observation and monitoring. In fact the vehicle requires the driver to periodically return hands to the steering wheel. Rules for automated vehicles are still taking shape. Clearly this is “beta”, and intended for limited access roadways, not city streets, though Tesla drivers do use it on local roads as well as freeways. Here are a few of the issues:

  • Stopping: The vehicles do not yet automatically stop at traffic lights or stop signs, though it is assumed that engineers are working on and testing those functionalities, which may already be in the hands of testers.
  • Following traffic: When following a vehicle in city traffic, the Auto-Pilot may induce the car to run the red if the car in front ran the red (or made a right turn) instead of stopping at the light.
  • Lane marking issues: Ambiguities in lane markings (for instance at freeway merges and diverges, or as a result of road construction or restriping) still create difficulties for the vehicle in Auto-Pilot mode. During the drive, the vehicle would pull toward the exit by following lane markings. Drivers have reported “increasingly less tendency to try to take exits and overall it is clearly improving and needing less driver intervention each week.”
  • Curves: First person observations are that vehicles still over-react on curves (following the average of the inside and outside curve, rather than a fixed distance from the inside curve). Elon Musk has tweeted that slowing for curves is coming, and some Tesla drivers are reporting that their vehicles have been updated. Changes like this are part of the brilliant learning system Tesla has deployed.
  • Merging: The give-way game between merging vehicles and an on-road Tesla cannot yet be safely conducted in the absence of driver intervention. As we drove in the right lane, a Mercedes approached from an on-ramp and neither decelerated to come in behind us, nor accelerated to pass us. Our vehicle stayed at a constant speed. The Mercedes would either sideswipe us or run off the road. The driver manually intervened and accelerated (which Teslas do quite well; I can’t wait for Plaid mode, since Ludicrous mode is injurious enough if you are not braced).

Comparison to Google

The manual intervention thus requires drivers pay attention. Thus far, it doesn’t seem like drivers are being lulled to unawareness with autopilot mode on cars, but lulling is a risk if drivers trust too much. This is the advantage of Google’s all-in approach, where the driver can’t retake control even if they want to. Nevertheless, Auto-Pilot has saved lives already, see the video at this link, where an ill-timed U-turn across traffic which would have otherwise resulted in a crash was prevented).

Teslas do not presently drive independently via a map from origin to destination the way Google’s test cars do. There is no obviously linkage between satellite navigation and mapping and the control function. Teslas appear to be map-independent, and controls are through on-vehicle sensors.

The car still smells new despite being nearly a year old. I believe the car’s filters “Bioweapons Defense Mode” has something to do with that. Tesla also still retains some pluckiness and personality, despite having a market capitalization of $27B.

The vehicles are constantly learning, however, using driver interventions as expert trainers, so many of these problems will resolve themselves. None of these should be taken to mean cars won’t be automated; they will be, as a series of technical hurdles to be overcome, and interesting ambiguities and tacit knowledge on the part of drivers must be made explicit before we can hand our fates to our machines.

Video

See video of the ride.

Autonomy Island

The End of Traffic and the Future of Access: A Roadmap to the New Transport Landscape. By David M. Levinson and Kevin J. Krizek.
The End of Traffic and the Future of Access: A Roadmap to the New Transport Landscape. By David M. Levinson and Kevin J. Krizek.
Ricardo Montalban and Herve Villechaize Fantasy Island (1977)
Ricardo Montalban and Herve Villechaize Fantasy Island (1977)

“Ze Car, Ze Car.”

“My dear guests, I am Mr. Roarke, your host. Welcome to Autonomy Island.”

Yes, here on Autonomy Island, all of the cars are autonomous. Your adventure will be to ride and drive in a place without fear of a human running you over.

When will an automaker (or collective of automakers, or government, or Google) buy all the cars on an island (and perhaps rent the government), replace them with new autonomous vehicles, and see what happens … to safety, to travel behavior, etc?

This is the kind of real world laboratory experiment that would be highly useful to understand the implications, the unintended side effects, the bugs and so on of robotic cars.

For instance, take the US Virgin Islands. St. Croix has a population of about 50,000 people. If it follows general US patterns, it has about 33,000 light vehicles. For about $1B [Less than the cost of a single NFL stadium] all of the cars could be replaced with autonomous vehicles at about $33,000 each. [This might be a stretch, but that would be a typical mass production cost.]

The USVI collectively has between 10 and 20 auto fatalities annually. At a $9.1 million value of life, that is at least $91M per year. In 11 years, the experiment would pay for itself if in fact it eliminates fatal crashes the way autonomous vehicles are expected to, leave aside any other potential benefits.

The advantages of an island are that it is a closed system, it can be fully mapped, no one can drive on or off. The advantages of a real island with real people are the ability to see how these interactions might actually occur in use.

Autonomous vehicles interacting with only autonomous vehicles should be much easier to design than autonomous vehicles in mixed traffic, as the environment is less variable. People, animals, weather, and so on are still potential confounding factors, but should be simpler to manage than a person in a car.

Electric Antecedents: How the Electric Vehicle Evolved | The Transportation Experience

Adapted in part from Garrison and Levinson (2014) The Transportation Experience: Second Edition, Oxford University Press. This provides additional background on the topic of  yesterday’s post Electric Avenue.

The Transportation Experience: Second Edition by William L. Garrison and David M. Levinson
The Transportation Experience: Second Edition by William L. Garrison and David M. Levinson

The automobile was the obvious technology of the future. It had been forecast and developed for nearly a century before mass production. Yet when the patent application of  future Congressman Nathan Read, an early steamboat developer in Connecticut who proposed a steam-powered automobile in 1790s, was read aloud in the House of Representatives, members struggled to suppress laughter. A century later some practical vehicles entered the market. The path was trod in fits and starts. In 1835 Thomas Davenport of Vermont built the first rotary electric motor which pulled 31-36 kg carriages at 5 km/h. In the late 1830s Robert Davidson of Scotland built a carriage powered by batteries and a motor, and later an electric coach, the Galvani, running on rail tracks. In 1851, Charles Page built an electric locomotive reaching a speed of 30 km/h. Those experiments ended without widespread market success. In parallel with steam and electric experiments, the Internal Combustion Engine(ICE) was patented in 1860 by Belgian engineer Jean Joseph Etienne Lenoir, who applied a coal-gas and air burning version to his three-wheeled Hippomobile. Nikolaus Otto developed his engine in the 1870s and Karl Benz used Otto’s engine to power a 600 watt (0.8 horsepower) three-wheel carriage in 1885. While today, the automobile is widespread and mostly employs the internal combustion or diesel engine, that technological outcome was not obvious to many of those in the field as late as 1900.

The electric grid, developed by Edison and others, was necessary for practical electrical transportation. Electricity was first widely applied in transportation to the streetcar. By 1879 Siemens and Halske built a 2.6 km line in Berlin. Battery trolleys were tested in early 1880s in places like the Leland Avenue Railway in Philadelphia, but by 1887, a New York financial syndicate funded Sprague Electric Railroad and Motor Company to build a 19.2 km line in Richmond, Virginia. Over the next three decades trolleys exploded across US cities. The electric streetcar, and other electric railways, transmitted power to the vehicle via a cable, a technology not suited for the automobile.

1893 World’s Columbian Exposition displayed six automobiles. The only one from the US, by William Morrison of Iowa, was electric. Yet the energy density of the battery remained the principal constraint on the electric vehicle’s market share. By the turn of the century, range and the energy per unit weight of battery compared with gasoline engines were already defined as key weaknesses by the best engineering talent of the time.

Battery-powered vehicles have more limited range (distance before recharging/refueling) than gasoline-powered vehicles due to energy density. The limits to battery technology result from battery weight. Each additional battery reduces the effectiveness of all the others, as they must spend some of their stored energy moving around other batteries instead of the rest of the car and passenger. Diminishing returns set in quickly. (The same issue affects liquid fuel of course, but it is not as severe since the energy density is higher).

While longer distance touring was a relatively small market, people consider the extreme use for the vehicle they buy, not the average, hence the personal trucks we see on urban and suburban streets. A vehicle must be usable in a maximal number of conditions. People imagined traveling longer distances than an EV could run. Other problems were the under-developed electric grid (as late as 1900 only 5 percent of factory power was electric) and lack of charging stations, especially at homes.

The plug to connect the car battery to a wall socket was not developed until 1901, prior batteries had to be removed from vehicles, no trivial task. While some electric utilities encouraged EVs and helped charge and maintain them at central stations, promoting local EV sales, most utilities saw these customers as nuisances rather than a source of business. Range (c. 1901) was about 4 hours, so charging was a frequent event. Fast charging (a charging time of one or two hours was considered fast) deteriorated the batteries. People thought of solutions. For instance, a charging hydrant, dubbed an “electrant.” located every few blocks was proposed, but never implemented, to permit travelers to pull over and pay for a metered amount of electricity. These ideas have been reappeared in recent decades as people seek to solve the same problems with electrics. Again, the number of charging stations remains quite limited, as no one wants to invest in a network of charging stations until there are many plug-in electrics requiring charges, and few will buy plug-in electrics if the cost and convenience does not match its technological competitors.

Another concept, developed by L.R. Wallis in 1900 was to have a parent battery company, from which batteries would be leased, and then swapped out when needing recharging for already charged batteries. This idea has been revived with Shai Agassi’s company Better Place in the 2000s, which hoped to develop a network of battery exchange centers, before entering bankruptcy. Similarly, electric garages, modeled on livery stables (for horses) were established to limit the owner’s need to deal with the difficulties of charging and maintaining the car.

While range and charging issues were obvious downsides, the primary advantages of electric vehicles at the time had to do with user interface. Charles Kettering had yet to develop the self-starter, so gasoline engines required the user to get out and crank. This was a non-starter for upper-income women, who thus preferred electric vehicles. EVs were often marketed to women, but this feminizing of the product may have discouraged men. An emerging middle class of urban professionals, managers, and white-collar workers formed a market for a new type of transportation.

The best-selling Oldsmobile sold only 425 vehicles in 1900. The market was still minuscule, but growing exponentially. Detroit in 1900 was much like Silicon Valley in the 1970s, with its HomeBrew Computing Club that begat Apple Computer and Microsoft. By 1912 Model T sales reached 82,388, in 1914: 200,000, in 1915: 400,000. Despite Edison’s encouragement of Ford’s gasoline-powered car, as noted in the opening quote, later Edison and Ford worked together in a failed attempt to bring about an electric car that was competitive with gasoline-powered vehicles.

In 1900 and 1905 the 1,200 electrics sold were fewer than 10 percent of all vehicle sales. Ultimately EVs fell further and further behind as economies of scale drove down the relative cost of its competitors, attracting a greater and greater share of consumers. Like Internal Combustion Engines (ICEs), EVs were rising in sales, but at a much more modest pace, growing to only 6,000 vehicles in 1912.

Because of the difficulty consumers had with charging, Salom and Morris of the Electric Storage Battery (ESB) Company proposed a fleet of rental cars (an antecedent to car sharing), where professional would charge and maintain the vehicles. Individuals would still rent or lease a particular car. However, this failed to get critical mass, and required picking up the car, rather than storing it at home. In the end this became a fleet of cabs, where instead of recharging batteries in the vehicle, batteries would be swapped in and out, and charged (slowly) out of the vehicle.

Owner of New York’s Metropolitan Street Railway Company, Henry Melville Whitney consolidated the electric vehicle industry beginning in 1898, acquiring ESB, combining with Pope, and absorbing the Riker company, with the aim of establishing a fleet of 15,000 electric cabs to serve urban America. This “Lead Cab Trust” began to fail when the batteries, designed for smoother running streetcars or stationary operations did not do well on bumpy road surfaces and the frequent charging and discharging use of cab service, rather than the more sedate private ownership. Batteries deteriorated with use along with age.

The Edison Storage Battery Company aimed to develop a nickel-iron alkaline battery to replace the lead-acid battery. Edison’s competitor, ESB, tried to perfect the lead acid battery. The New York Electric Vehicle Transportation Company, part of EVC (the Lead Cab Trust) was probably the largest consumer of such batteries. It also developed its own central station and substation, and started running electric buses on Fifth Avenue as well as other routes. Other subsidiaries of the Trust fared less well, the New England and Illinois branches of EVTC folded in 1901. Edison hyped his battery for years, but it was not widely used once it came to market, as the cost-energy density tradeoff never worked favorably.

The self-starter for the automobile was modeled on the newly motorized cash register, by National Cash Register engineer Charles Kettering. His company DELCO was acquired by General Motors. This seemingly modest innovation made the gasoline powered automobile usable by those without the strength to turn the crank, and thus as easy to start as an electric. After Kettering, the automobile become an electric system in miniature: Its generator (with the battery) was the central station, which distributed current through a network for uses like starting the car, but also for headlights, and later radios and other purposes.Battery makers thus boomed not from selling batteries to makers of EVs but from selling to makers of gasoline-powered cars containing an electric self-starter.

Electric Vehicle in Kyoto
Electric Vehicle in Kyoto

It would be nearly a century before EVs became popular again.

References:

  • Hoffmann, P. (2002). Tomorrow’s Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet. The MIT Press.
  • Koppel, T. (1999). Powering the Future: The Ballard Fuel Cell and the Race to Change the World. Wiley.
  • Lienhard, J. (2006). How Invention Begins: Echoes of Old Voices in the Rise of New Machines. Oxford University Press.
  • Nye, D. (1992). Electrifying America: Social Meanings of a New Technology, 1880-1940. The MIT press.
  • Schiffer, M., T. Butts, and K. Grimm (1994). Taking Charge: The Electric Automobile in America. Smithsonian Institution Press
  • Sperling, D. and D. Gordon (2009). Two Billion Cars: Driving Toward Sustainability. Oxford University Press, USA
  • Swift, E. (2011). The Big Roads: The Untold Story of the Engineers, Visionaries, and Trailblazers Who Created the American Superhighways. Houghton Mifflin Harcourt

Automated Vehicles are Probably Legal in the United States

Bryant Walker Smith writes 99 pages saying Automated Vehicles are Probably Legal in the United States:

“This paper provides the most comprehensive discussion to date of whether so-called automated, autonomous, self-driving, or driverless vehicles can be lawfully sold and used on public roads in the United States. The short answer is that the computer direction of a motor vehicle’s steering, braking, and accelerating without real-time human input is probably legal. The long answer, which follows, provides a foundation for tailoring regulations and understanding liability issues related to these vehicles.
The paper’s largely descriptive analysis, which begins with the principle that everything is permitted unless prohibited, covers three key legal regimes: the 1949 Geneva Convention on Road Traffic, regulations enacted by the National Highway Traffic Safety Administration (NHTSA), and the vehicle codes of all fifty US states.
The Geneva Convention, to which the United States is a party, probably does not prohibit automated driving. The treaty promotes road safety by establishing uniform rules, one of which requires every vehicle or combination thereof to have a driver who is “at all times … able to control” it. However, this requirement is likely satisfied if a human is able to intervene in the automated vehicle’s operation.
NHTSA’s regulations, which include the Federal Motor Vehicle Safety Standards to which new vehicles must be certified, do not generally prohibit or uniquely burden automated vehicles, with the possible exception of one rule regarding emergency flashers.
State vehicle codes probably do not prohibit—but may complicate—automated driving. These codes assume the presence of licensed human drivers who are able to exercise human judgment, and particular rules may functionally require that presence. New York somewhat uniquely directs a driver to keep one hand on the wheel at all times. In addition, far more common rules mandating reasonable, prudent, practicable, and safe driving have uncertain application to automated vehicles and their users. Following distance requirements may also restrict the lawful operation of tightly spaced vehicle platoons. Many of these issues arise even in the three states that expressly regulate automated vehicles.
The primary purpose of this paper is to assess the current legal status of automated vehicles. However, the paper includes draft language for US states that wish to clarify this status. It also recommends five near-term measures that may help increase legal certainty without producing premature regulation. First, regulators and standards organizations should develop common vocabularies and definitions that are useful in the legal, technical, and public realms. Second, the United States should closely monitor efforts to amend or interpret the 1969 Vienna Convention, which contains language similar to the Geneva Convention but does not bind the United States. Third, NHTSA should indicate the likely scope and schedule of potential regulatory action. Fourth, US states should analyze how their vehicle codes would or should apply to automated vehicles, including those that have an identifiable human operator and those that do not. Finally, additional research on laws applicable to trucks, buses, taxis, low-speed vehicles, and other specialty vehicles may be useful. This is in addition to ongoing research into the other legal aspects of vehicle automation.”

(Via Marginal Revolution.)

Lean Machine for the 21st Century

ToyotaiRoadAutoblog tells me about the Toyota i-ROAD :

“According to Toyota, the “i-ROAD takes the company closer to its goal of creating the ultimate range of eco cars.” As you’re surely aware, that range of eco cars includes the enormously successful Prius family, but this new machine is nothing like the hybrid hatchback. And it’s not even a car – Toyota calls the i-ROAD a Personal Mobility Vehicle.
Toyota’s i-ROAD Concept, which debuts at this week’s Geneva Motor Show, is adorned with just three wheels, meaning it’s just as much a motorcycle as it is a car, and the driver and passenger sit in tandem style instead of side-by-side. This arrangement allows for a very thin 850mm width, which is about the same as a large motorcycle. Because the cockpit is enclosed, the occupants don’t need helmets, nor are they open to the elements outside.
Also like a traditional two-wheeler, the i-ROAD tilts through the turns and when driving on uneven surfaces. Toyota says its computer-controlled Active Lean technology automatically balances the vehicle with no input from the driver.

LeanMachine

This is of course cool technology, and we have been awaiting skinny cars for a long time (even before GM’s Lean Machine). Even without automation, this could add significant capacity and safety to road networks, as well as providing space conservation and energy reduction. Some videos follow. When will Toyota (or anyone) mass produce this so the costs are below those of passenger cars.

 

 

The End of Traffic and the Future of Access: A Roadmap to the New Transport Landscape. By David M. Levinson and Kevin J. Krizek.
The End of Traffic and the Future of Access: A Roadmap to the New Transport Landscape. By David M. Levinson and Kevin J. Krizek.

4 wheels bad, 1 wheel good (From the vehicles have too many wheels, Dpt.)

Ryno
A picture of the Ryno is to the right. (I have yet to see one in the wild). It is self-balancing, and so the Segway of mobility scooters/motorcycles. As they say, don’t let the road get in the way of your life. It is limited to 12.5 mph, and so one may ask, how is this better than a bicycle? Well if you don’t want to pedal. … How is this better than Segway? Well if you don’t want to stand, and somehow it looks cooler.

A page devoted to vehicles with only one wheel is here: Motorwheels monowheels They are not all of the unicycle variety.