Sydney Metro Opening Day: A Review

Sydney opened the long-awaited first Northwest section of its “Metro” line. Sydney has long had grade-separated, high-frequency train service (Sydney Trains) through its core, the “Metro” is different in that it is:

  • single-deck rather than double deck, with more doors, for faster boarding times
  • standing rather than sitting oriented (on a crowded train more standees than seated passengers, compared with Trains)
  • automated rather than manually driven
  • with platform-based as well as train-based doors, to improve safety.

In other words, while Sydney Trains is what Americans would think of as commuter rail, but on steroids, Sydney Metro  is like late 20th century (early 21st century) trains built in much of the developed world, most similar to systems like BART, DC Metro, or MARTA.

To get to the Metro, we took Sydney Trains from Redfern to Epping. At Epping, one descends and descends to reach the Metro platform. The stations and controls from Epping to Chatswood were remodeled from the early 21st century trains line (when the corridor was expected to be a Trains rather than a Metro. We took the line west to Tallawong (a parking lot and near the train stabling facility), and alighted and boarded the eastbound train which we took to Rouse Hill, where we alighted for lunch, making a series of culinary choice errors at the Rouse Hill food court, though I am not clear one could do otherwise.

The good news is that demand was high (75,000 in five hours, the Sydney Morning Herald gushes), apparently exceeding expectations. People are curious about the line, want to see it succeed, want to be able to use public transport to reach the city. Even before the problems that I will soon describe emerged, it was Standing Room Only on the westbound run.

The trains had indicators showing where they were on the line. There was an emergency stop button located near the doors which look like a User Interface disaster waiting to happen (that is, there will be an enormous number of false positives as people will push the button accidentally or in the believe it is required to open the door, as in an elevator).

The braking sound of the train is very much like DC Metro, though deceleration did not induce the same kind of nausea that DC Metro does. There is nevertheless a significant uncomfortable jerk as the Metro train comes to a stop at many of the stops.

After thoroughly exploring the Rouse Hill Town Centre, we queued up to board the Metro back, to go to Chatswood, and then transfer to a Train back to Redfern.

The bad news is the service operator (MTR) was not quite ready to provide a reliable service. We may eventually discover whether someone(s) specifically screwed up, or whether failure is indeed an orphan. Apparently (I did not witness this, but people report) there were issues with platform and train doors aligning, and issues with doors closing properly and with trains overshooting the platform. This held up trains Chatswood and Macquarie Park, and thus eventually all the trains in the line, as shockwave of stoppage cascades backwards all the way to Tallawong.

It took 1 hour and 40 minutes from Rouse Hill to Chatswood. The first 40 minutes were queueing at Rouse Hill, so as not to overload the platform for the few trains making it through, it was no 90 second, or 4 minute, or 5 minute headway as variously promised by various people at various times. The remaining hour was on train from Rouse Hill to Chatswood. The scheduled time is 35 minutes station-to-station.

Epping Metro, as the train to Tallawong approaches
Epping Metro, as the train to Tallawong approaches
No up escalators at the spacious Rouse Hill Metro Station
No up escalators at the spacious Rouse Hill Metro Station












This opening debacle will, as first impressions are important, likely create a perception that the service is unreliable. If this is coupled with a few well-publicised rush hour breakdowns, it will take years to fully regain a reputation for reliability, and people will clamor for restoration of more express bus services. Obviously some of this technology problem is teething issues, and will be eventually sorted out, but surely this should have been worked out in testing … unless it was rushed for some reason.

The queue management was professional if indicative of problems. The communications with customers about the problems was vague.

Now, to be fair, opening day often brings about unexpected outcomes.

The opening of the Green Line light rail between Minneapolis and St. Paul was marked by an automobile wrongly driving on, and getting stuck on, tracks; and the train hit multiple pedestrians in its first year.

The Opening of the Liverpool and Manchester railway killed a prominent Member of Parliament. So the delays on the Sydney Metro are perhaps small potatoes in the scheme of things. One just would have hoped for a better performance.

* I am not commenting on the strategic decisions about the location of the line, etc. here.


The Magic of Streetcars, The Logic of Buses | A Political Economy of Access

We are pleased to make available Chapter 11: The Magic of Streetcars, The Logic of Buses of A Political Economy of Access. It opens:

A Political Economy of Access: Infrastructure, Networks, Cities, and Institutions by David M. Levinson and David A. King
A Political Economy of Access: Infrastructure, Networks, Cities, and Institutions by David M. Levinson and David A. King

Once upon a time (1888 to be precise), the United States and the world launched a huge building boom for urban streetcars. Companies like Twin City Rapid Transit laid miles of track in fast-growing cities, extending well past the built areas to serve greenfield sites for emerging suburbs waiting to be platted and built. They did this because the streetcar promoters benefited directly from the land sales. The availability of a new, fast transit system connecting to downtown made houses much more valuable. The fares from the new passengers covered the operating costs of the system.

How to increase transit ridership by up to 35% with one weird trick.*

This is a reprint from an article I wrote for The Conversation about our recent report “Catchment if you can: The effect of station entrance and exit locations on accessibility.”

Train riders have to get to stations somehow. This is often referred to as the “first mile” or “last mile” problem. There are many technical solutions to help travellers get from home to the station and back, ranging from cars to electronic scooters, but most people use a much older technology, their feet, to get from A to B. What is seldom considered is access to the train platform itself.

Stations are not points but places. They occupy a large area. A person walking at average speed takes about two minutes to walk from one end of a full-length eight-car train to the other.

Often platforms have a single access point on one side of the station, which makes it more difficult for people on the other side of the station to get to the platform. Passengers may need to almost circumnavigate the station to get to the platform. At an average walking speed, the extra distance they must backtrack adds up to six minutes per trip each way, our research has found.

Imagine being so unlucky to have an extra 12 minutes of travel time every day if you take the train. You might be tempted to drive instead.

Illustration of worst-case scenario, traveler lives west of the station with an East Platform and works East of a station with a West Platform, adding 6 minutes of travel each way, 12 minutes per day.

The table below shows the extra travel time in minutes depending on platform locations and access points for a traveller’s origin and destination. The average time for such a one-sided configuration of train stations is 3.25 minutes each way.
































Table 1: Additional Travel Time Depending on Origin and Destination Residence and Workplace Location vis-a-vis Platform Location.

While this example is hypothetical, it is drawn from experience in Sydney, where 44 of 178 train stations have only a single side entrance.

So what impact will a second entrance have?

We examined those stations and access to their platforms: how many people lived within 5, 10 and 15 minutes of the station platform, considering actual entrance location, and how many jobs were within 5, 10 and 15 minutes of the platform. Using existing ridership data from Opal cards, we estimated a model that related the passenger entry and exit flows at each station to that station’s accessibility.

Accessibility at train stations across Sydney. Author provided

We sketched a second entrance at those 44 stations and measured accessibility again. It’s now higher, as having two entrances instead of one means more people can reach the platform in the same time. We then estimated the increase in ridership from the model due to the improved accessibility, assuming no change in population or employment.

Over all 44 stations, total morning peak period entries increased by 5%. But some stations benefit a lot, and others not at all, so prioritisation of investments matters.

It will be no surprise to locals that Erskineville station comes out on top with a nearly 35% increase. While many of the new apartment-dwelling residents west of the station make the extra hike every day, even more would catch the train if there were a convenient entrance.

Other top 10 stations include: Bankstown, Newtown, Villawood, Redfern, Burwood, Sydneham, Caringbah, Meadowbank and Penshurst. Planning is already under way to improve Redfern station.

While this result considers existing development, adding a second entrance can make new transit-oriented development that much more valuable. This is because it will likely increase activity on the previously less accessible side of the station, as the example of Erskineville shows below.

Author provided


Other considerations include accessibility for people who cannot use staircases, as many of the stations are older and will require lifts. The prospects of park-and-ride lots, the costs of construction, the presence of nearby stations, and site feasibility also play into final decisions.

Our formal findings and details methods are summarized in this Executive Summary, and written up in this report: Catchment if you can: The effect of station entrance and exit locations on accessibility

The full Atlas is here: Atlas


A brief interview was ABC NSW News, Friday May 3, 2019, starting at 13:24 into the broadcast.

*Results vary by station.

An argument in favour of streetcars

I am a noted streetcar skeptic. I have written blog posts about their issues. As an objective analyst, I will however admit an advantage streetcars or trams have over buses.

This is not the ‘permanence’ justification that is often heard and easily disproved (i.e. where are they now if they were so permanent?). But it is related, once laid down, tracks are harder to move than buses, and tracks are more expensive, so it is harder to make routes circuitous. Many bus routes look like they were designed by drunk transit planners. One local bus the 370, which runs near my office and my home is so circuitous it is faster to walk even ignoring schedule delay. (It is not quite faster to walk end-to-end though, walking time is 2:30 vs. 1:14 on the bus, so the effective bus speed, assuming schedule compliance, is about 9.6 km/h vs. 4.8 km/h walking.) I have written about this before in Minneapolis, (and nearby Rosedale) and circuity is hardly an unknown problem.

370 Bus Route on Google Maps
370 Bus Route on Google Maps

Now there are undoubtedly reasons for every indirect deviation that diverts buses from the straight and narrow. However, every circuitous zig also loses passengers, and bus routes in the US are much more circuitous than travel by road. Serve this building, serve that one, cover this street, reduce pedestrian walking time.

In contrast, trams in practice are much more straight-laced, paragons of transit routing virtue. The historic Sydney Tram Map, as this map in wikipedia shows, gives a sense of routes that were pretty much as direct as possible.


Now it can be argued this particular bus provides and east-west service that no tram did, which is true in part. But that doesn’t mean trams could not. It also could be argued that almost no one rides the 370 end-to-end. Though I have not checked the Opal data, this is probably true as well. But a well-structured suburb-to-suburb transit network (my fantasy map is here, Jarrett Walker has done this as well) could avoid this. To be fair as well, the Sydney frequent network is not nearly as circuitous as the 370 bus, which has a roughly 20 minute headway

A Political Economy of Access: Infrastructure, Networks, Cities, and Institutions by David M. Levinson and David A. King
A Political Economy of Access: Infrastructure, Networks, Cities, and Institutions by David M. Levinson and David A. King

Optimum Stop Spacing for Accessibility

Relationship between Dwell Time, Stop Spacing, and Accessibility

Recent working paper:

This paper describes the connection between stop spacing and person-weighted accessibility for a transit route. Population distribution is assumed to be uniform along the line, but at each station, demand drops with distance from the station. The study reveals that neither short nor excessive stop spacings are efficient in providing accessibility. For the configuration of each transit route, an optimum stop spacing exists that maximizes accessibility. Parameters including transit vehicle acceleration, deceleration, top speed, dwell time, and pedestrian walking speed affect level of accessibility achiev- able, and differ in their effect on accessibility results. The findings provide an anchor of reference both for the planning of future transit systems, and for transit operators to make operational changes to system design parameters that improve accessibility in a cost-effective manner. The study technically justifies the “rule of thumb” in setting different stop spacings for metro, streetcars, and other different transit services. Different types of transit vary in their ability to provide accessibility, slower moving streetcar (tram) type urban rails are inherently disadvantaged in that respect. Thus the type of transit service to be built should be of particular concern, if the transit is to effectively serve its intended population.

Effects of Timetable Change on Job Accessibility

Recent working paper:

Accessibility change between old and new timetables.
Accessibility change between old and new timetables.

Accessibility is often not a performance measure for transit services. This study is conducted following the introduction of new timetables which intended to improve passenger throughput for Sydney’s transit services, but resulted in major delays experienced by passengers thereafter. Accessibility at 30-minute travel threshold before and after the timetable change are calculated between 8 to 9 am, to measure accessibility benefits, if any, from the new timetable. The results show a lack of systematic improvement by the new table, and downgrade of accessibility on average. The overall person-weighted accessibility dropped by 3%, from 45,070 to 43,730, and 63.3% of the population’s access to jobs would be adversely affected after its implementation. This study advocates for the inclusion of accessibility metrics into transit performance measures to connect with people who use transit.

Access Across America: Transit 2017

My colleagues at the University of Minnesota just released Access Across America: Transit 2017. The time series here is a big deal, it is now possible to look at change at accessibility systematically from a national perspective, and compare cities. From the page:

Most U.S. metros increase access to jobs by transit


The 2017 edition of Access Across America: Transitreports that 36 of the 49 largest metros showed increases in job accessibility by transit. Though rankings of the top 10 metro areas for job accessibility by transit only changed slightly from the previous year, new data comparing changes within each of the 49 largest U.S. metros over one year helped researchers identify the places with the greatest increases in access to jobs by transit. Kansas City improved more than 17 percent. San Francisco, which ranks 2nd for job accessibility by transit, improved nearly 9 percent. In all, 42 of the 49 largest metros showed increases in job accessibility by transit.

“This new data makes it possible to see the change from year to year in how well a metro area is facilitating access to jobs by transit,” said Andrew Owen, director of the Observatory. “Transit is an essential transportation service for many Americans, and we directly compare the accessibility performance of America’s largest metropolitan areas.”

Key factors affecting the rankings for any metro area include the number of jobs available and where they are located, the availability of transit service, and population size, density, and location. Better coordination of transit service with the location of jobs and housing will improve job accessibility by transit.

Kansas CityAccessibility map of Kansas City

New York CityAccessibility map of New York City

Why is Public Transport Use Higher in Australia than America and What to Do About It.

Why does Australia have higher transit use than the US?

This question has two major explanations: Driving is harder and using transit is easier. On the road side, as my colleague Wes Marshall says: “Policy-related differences include stronger and more extensive enforcement programs [in Australia], restrictive licensing programs, and higher driving costs.”

Transit Growth in Australia via
Transit Growth in Australia via

In places like central Sydney, narrower lanes and expensive parking also make driving a burden. The Australian motorway system is less developed than the US interstate highway system, though the government is funding major new urban motorways in Australia (e.g. WestConnex in Sydney).

Transit benefits because higher population and employment density (especially around transit stations ) within cities compared to  most US cities (as well as a more urban population overall) reduces access time to and from transit and enables higher frequency service to serve the demand. The train, bus, and tram systems in Australian cities are relatively high frequency and fairly reliable, with all-day service. While the systems are imperfect (as any daily commuter will tell you) they are orders of magnitude better than most of the US.

Transit service is a positive feedback system (The Mohring Effect, named for Transport Economist Herb Mohring who first identified it). More demand calls for more service, the additional service is in the form of additional buses and trains running at different times than the original service, reducing schedule delay, making transit more convenient, calling for more service. This works two ways, so transit cutbacks increase headways (decrease frequency) making transit less convenient, lowering demand, resulting in more cutbacks.

From the 1920s when tram (streetcar) use peaked (notably excepting the spike during World War II) through the 1960s there was a process of Bustitution — substitution of buses for trams. Many cities around the world (notably excepting places like Melbourne, Toronto, San Francisco, and especially selected cities in Europe) instead of paying the costs of recapitalising their tram systems, opted to convert tram lines to buses that had much lower capital costs.

In the US, there is a grand conspiracy theory, about how this came about. While most of the conspiracy theory is over-blown, there was some evil doing, as is the wont of people infected with greed (better known as people). In Minneapolis the people who converted the streetcar to buses went to jail, not for the conversion but for crimes like bribing state legislators and giving kickbacks. In Brisbane, the Paddington tram depot caught (were set) on fire as bus conversion was being debated, answering the question.

In general, the reality is much more market-rational. Electric trams were first deployed in the late 1880s, so by 1950 the service was over 60 years old. Trams needed a major capital infusion to keep operating. That capital infusion was not forthcoming from fares; in the US trams had clearly been in decline for the better part of thirty years.  It was a hard call for cities not to replace their trams with buses. The private sector, which financed trams initially, were unwilling to finance it again, leaving it to local governments to come up with money for the trams (or not, as it turned out).

So most cities became tramless. Those cities were losing transit riders before the conversion and lost more after the conversion. It’s a vicious cycle.

The new Light Rail mode (See Appendix) in North America kicked off with Edmonton (1978), San Diego (1981),  and Portland (1986). In retrospect, many people regret the process of bustitution, and cities that later reinstalled LRT systems would with perfect foresight likely have kept their tram lines going and recapitalised them. Note that the actual coverage of these new system is much smaller than the historical trams, most tram lines were removed in most North American cites, as in Sydney.

Wikipedia reports the farebox recovery is lower in Australia than US cities, which implies a higher public subsidy. (I am not convinced there aren’t methodological differences in accounting here, but it is worth noting).

Why is Australia’s transit use rising when the US is falling?

A train that showed up at Sydney’s Central Station

The second question is more difficult. One response is that fuel prices remain higher in Australia. Another is that there has been more investment in transit, including more frequent service and continuous improvements to stations and vehicles. Third, Australian cities have recently rolled out smart cards (Opal in NSW) like the Oyster Card in London, and along with it pricing reforms to reduce the fare penalty for transfers, which has significantly boosted use of transit.

Australia does some other things differently from the US. Among them is increased use of contracting out to private firms to provide service. (This is not universal yet, but is growing.) This is also done in the UK and most of Europe, but not very much in the US. This has effects on costs and perception and unionization. The contractors are for-profit businesses aligned with the idea of higher ridership, so support for transit in Australia is bipartisan, while in the US, transit is considered a Democrat issue in most places, and Republicans are often actively hostile as it is not their constituents (or only support transit to their suburban districts with high cost, low value commuter rail systems like Northstar in Minnesota).JtW-AU-Delta

While transit in the US is perpetually in “crisis” (to listen to its supporters), in Australia (and Canada and Europe) it is a normal part of society that is widely used, and doesn’t have the same stigma associated with it.

What should the public sector do to increase ridership?

I asked on Twitter “Would restoring Sydney Trams to a network resembling that at their maximum extent (291 km), similar in scope to Melbourne’s Tram network today, be a good use of public resources?”

The response was

  • 50% Yes, Benefits >> Costs
  • 27% No, Benefits << Costs
  • 23% Maybe, Benefits ~= Costs

Looking at Sydney the densities are much higher here than in most North American cites, aside from New York, San Francisco, Chicago. I previously examined the existing and planned trams in Sydney.

Because they are widely used, they have a strong constituency for their betterment, and government is responsive in expanding the system.

Convincing existing some-time riders to ride more is far easier than going from 0 to 1 as Peter Thiel might say.

I think early ridership gains come from going deep rather than going wide. A large fraction of the US still lives in areas designed around transit (basically pre-1920 America), including city cores and streetcar and commuter rail suburbs.  Residents sometimes use transit now. These places are much easier to serve because the land use in conducive to transit, the densities are high enough and the networks are oriented for transit access and service.

Good, relatively cost-effective service like Minnesota’s arterial BRT (bus rapid transit ) (MetroTransit’s A Line, eg) have shown large ridership and user satisfaction gains with low investment. The system is made more efficient with things like payment before boarding, and all-door boarding, reducing time at stops and increasing driver and bus productivity.

The aim should be to serve users better, not help non-users by reducing congestion, which may be a happy byproduct, any more than building roads aims to reduce transit crowding.


  • Wesley E. Marshall (2018) “Understanding international road safety disparities: Why is Australia so much safer than the United States?”
    Accident Analysis and Prevention 111. 251–265
  • Mohring, H.(1972). “Optimization and Scale Economies in Urban Bus Transportation,” American Economic Review, 591-604.

Appendix: Streetcars and Trams vs. LRT

The difference between Light Rail and older streetcars or trams is primarily, but not entirely, one of branding. Anyone who says there is a clear formal difference that people abide hasn’t gotten out much. Different cities use the same words to mean different things. Still there are differences in degree:

  • Streetcars or trams often share right-of-way in the street, while Light Rail often has a mostly exclusive right-of-way with at-grade crossings, but either system can be operated either way.
  • Light Rail vehicles tend to be wider with higher capacity and longer with higher capacity,  its longer vehicle is a heavier vehicle: Light Rail is not light, it’s only light with respect to commuter trains; it’s not light with respect to buses, cars, or people. Light sounds airy and like it should be less expensive, but it’s a only a little less expensive.

Transit vehicles and services form a continuum, you can operate streetcars in exclusive tunnels as in Boston. Both LRT and streetcars differ from commuter trains but it’s a continuum in regard to that as well.

Inner Sydney Transit Grid – Fantasy Map

While we are doing fantasy transit maps, here is my indicative sketch of an Inner Sydney Transit Grid (i.e. these are new high-frequency transit lines, likely some mix of tram/LRT or arterial Bus Rapid Transit with mostly dedicated lanes, assuming the already existing Sydney Trains and planned LRT and Metro [Red] lines remain, plus something on Parramatta Road [Green]). These are, of course, doodles, I haven’t done any modeling of them yet, and they would certainly replace existing bus routes in places.

The problem I am trying to solve is that the network is too radial in orientation, and even simple lateral movements are difficult on public transport. A clearly defined, not circuitous, high-frequency system that serves Sydney outside the CBD (without having to transfer in the CBD) seems useful. The lines are designed to connect existing and planned stations conveniently, so the routes are run on-street from station to station.

Inner Sydney Grid
Inner Sydney Grid


The concept is to provide ring routes to complement the existing and under construction radial train lines

Starting along the Pacific there are 6 major lines (Ocean to River):

  • Bondi – Fish Market (via Paddington ) [Pine Green]
  • Bronte – Glebe (via Moore Park) [Pink]
  • Coogee – White Bay (via UNSW, University of Sydney) [Purple] [The Busful of Knowledge]
  • Maroubra – Balmain (via the Canal Zone) [Orange]
  • Little Bay – Drummoyne / Abbotsford (via the Airport* and Ashfield) [Brown]
  • Brighton Le-Sands – Mortlake (via Campsie and Burwood) [Silver]

There is also an interior branching route

  • Annandale – Alexandria [Avocado Green, Maroon]

There are some “new” thin radial lines shown, which track old tram lines, in particular around the University of Sydney and Newtown. And there are some new shuttle lines in Technology Park (and presumably on the Darlington side as well) (running along the rail lines) to better connect workers to the nearby stations, which are actually relatively far away given the large numbers of workers.

With most of these there is challenge finding right-of-way. I would take it from existing streets (these lines are mostly at-grade) so transit has priority. This assumes that transit service would carry more people than a laneful of cars, which likely will hold if the transit is designed to be effective. This is easier to do where there is on-street parking, harder where there is not.

* The Brown Line as shown, this assumes a rail line sharing tracks with existing rail service in airport tunnel. I am not certain the technical feasibility of this, otherwise it circumnavigates the airport somehow.