Wang, Yuning, Lu, D, and Levinson, D. (2022) Equilibrium or Imbalance? Rail Transit and Land Use Mix in Station Areas. Transportation. [doi]
Abstract
Although it is widely reported that rail transit has the potential to encourage higher density development, it remains unclear whether rail transit leads to more mixed urban development across station areas. This article provides rare quantitative analysis of changes in land use mix around the rail transit system in Tianjin, China through an investigation into the spatial effects of a rail transit line which cuts across both highly developed and lessdeveloped areas. By using longitudinal data over a twelve-year period (2004–2016) and by comparing the entropy-based land-use mix index, the study shows that with the operation of rail transit, land use mix has increased in formerly low-mixed station catchments, but the change is not obvious for already highly diverse areas. It also shows that a more balanced development occurs in station areas with higher land use dominance, while the leading functions are intensified in station areas with lower land use dominance. By presenting a clear picture of the spatial distribution and patterns of land use mix changes over time, this article concludes that rail transit leads to more balanced development across different station areas in the context of China’s rapid urbanization. The outcome provides a base for further exploring how the planning of rail transit stations may help tackle the differentiated development in cities.
Keywords Rail transit · Land use mix · Spatial variations · Tianjin
Much of that difference has to do with wealth and space. Despite the complaints, Sydney is rich (money doesn’t grow on trees, but it does grow in rocks), so most families have cars. Sydney is also far less concentrated than cities in Europe or Asia, so distances are more amenable to the automobile and less to public transport, and the accessibility indicators show that.
Still, it’s clear more can be done.
There have been a forest of expired plans for public transport in Sydney. There are more plans still in the works. They almost entirely focus either on Trains (and especially Metros), or on specific lines that a particular party is pushing. But a detailed comprehensive look at the layer below the trains is missing.
I believe that removing rather than recapitalising most of Sydney’s Tram network was a mistake, and the evidence of Melbourne’s popular Tram service is as close to case-control comparison you can find in this field. Sydney has higher transit mode share than Melbourne, but that is because the Trains are so much better (higher frequency), not because people like the buses better than the Trams.
Still, that does not mean the trams should all be put back. First, Sydney cannot build everything on the historic maps, at least not all at once, even Chinese Metros have been built over phases. Even more significantly, you do not want to:
It may have been overbuilt. Many historic tram lines were abandoned fairly early, indicating the proponents missed their mark.
We have to prioritise. Some things are more important than others, or have a higher benefit/cost ratio.
Conditions have changed. The places where historic trams were built may not warrant tram service today because the land use has changed, and of course because people’s travel preferences have changed with the widespread introduction of the automobile, the broader train network, and telecommunications and other technologies.
I have been thinking about a “blank slate” redo of Sydney surface public transport (buses and trams). This is something the Government could do in a decade if they applied themselves.
You can see a detailed version in Google Maps here. You will need to zoom out, as it centers on the Liverpool CBD (the geographic center of the region). As always feedback is welcome.
Extending the LRT System
The Figure below shows the Existing, Under Construction, and the Sydney FAST 2030 Proposal LRT Lines.
Sydney FAST 2030 Proposal: Proposed LRT Lines, Existing LRT and BRT, and Under Construction LRT.
Design Principles
History: The routes on the historic maps were reasonable starting points, they knew what they were doing and often reshaped the landscape to fit trams, and the human landscape reshaped to adapt to tram corridors. Trams added access.
Comport: The new lines should comport with their environment and take almost no existing buildings, but instead use existing street space as much as possible, especially former tram lines, as well as former rights-of-way where appropriate.
Significance: We want to connect places that were significant 100 years ago because they are most likely to be significant 100 years from now, lines should follow historic RoW.
Directness: Routes should proceed in a fairly direct (non-circuitous) routes between the origin and destination.
Parsimony: We should have a few core lines with a maximum of one split (two branches) at either end. The branches can be numbered differently (L2 vs. L3), but they share a core. Spurs with high frequency can be used if branching becomes a problem.
Complementarity: All lines should complement existing higher capacity public transport (Trains and Metro), not substitute for them. (Net riders on Trains and Metro should increase after the LRT opens)
Terminals: Lines should start and end at key transfer points (e.g. a Train Station) or destinations (e.g. the Beach)
Gap-filling: Lines should serve areas that are today underserved, even if it violates the above (e.g. Lane Cove)
Rebalance Movement and Place: Motorway construction allows us to repurpose roads that presently have a conflict between Movement and Place function (Parramatta Road, King Street/Princes Highway, Military Road)
Reconcentration: The collection of new lines (these plus that already committed) should serve all areas of the built up parts of Greater Sydney, and support infill (and brownfield) development rather than speculative greenfield development.
Exclusivity: The designs assume LRT to get high ride quality on exclusive tracks with lower operating costs. These are not classic trams that shared space with roads.
Frequent: Most lines are served by single (articulated) car (L1), at a high frequency rather than fewer but longer trains (L2) at low frequency.
Electrical: Electric powered, electricity delivered by wire (more efficient than battery storage)
Proposed LRT Lines
The Proposed Lines are discussed below:
L1sx: (Red) L1 Southern Extension: Central to Green Square and Mascot via Elizabeth and O’Riordan, Rationale: Serves existing high density areas and potential redevelopment sites. Elizabeth and O’Riordan are most feasible for Tram services due to Street widths among parallel routes and centrality. Provides capacity relief for T8 service, as well as serving areas in between the far-spaced stations. FAST Buses would serve parallel routes. Extends L1 to maintain balance of flows (not split CBD frequencies too much on L2/L3, single car trams appropriate for this street running service. (~5.8 km)
L2/L3liz: (Dark Blue) Elizabeth Street: Relocate the L2 and L3 on the eastern side of the Sydney CBD from George Street to Elizabeth Street (Phillip Street), and then circle around to George St. Rationale: Provides service to Eastern CBD via Tram (currently missing), allows George Street to serve L2 and L3 western extensions.
L2ex: (Light Blue) Coogee Extension: Extends L2 from Randwick through The Spot to Coogee Beach. Rationale: Connect to a popular beach from the CBD without a transfer
L2wx: (Light Blue) Broadway – Wolli: This line takes over the George Street LRT (which meets (and through runs with) the Elizabeth Street LRT. At Central it proceeds west along Broadway, South along City Road, down King Street in Newtown, down Princes Highway, to Wolli Creek. Rationale: Provides high capacity services to part of University of Sydney (Camperdown) currently without rail service, Newtown. It has the potential to pedestrianise King Street in Newtown (like George Street in the CBD) by terminating City Road at Carillon Avenue and terminating Prince’s Highway at Sydney Park Road, which should be now feasible in a post-WestConnex world.
L3ex: (Dark Blue) Little Bay Extension: Extends L3 along Anzac Parade from Kingsford through Maroubra to Little Bay
L3wx (Dark Blue) Broadway – Five Dock: The line splits with the L2wx line and runs along Parramatta Road to Norton Street in Leichhardt, and turns West at Marion, to proceed through Haberfield to Five Dock, where it terminates at a Metro Station.
L4: (Green) Oxford Street/Victoria Road: From West to East: West Ryde, via Top of the Ryde, Gladesville, Huntley’s Point, Drummoyne (assumes A40 tunnel under Drummoyne), Rozelle, sharing the existing L1 line (Alt: take two lanes from the Anzac Bridge), Museum, Darlinghurst, Paddington, Woollahra, Bondi Junction to Bondi Beach
L5: (Purple) North-South: Wynyard to Northbridge via Harbour Bridge, North Sydney, Cammeray to Northbridge. This project restores Tram service to Wynyard Station and the Harbour Bridge, providing local services to North Sydney, and enabling interchanges with regional Trains and Metro services.
L6: (Purple) Wynyard to Lane Cove via Pacific Highway. Sharing track with the L5, it branches to provide local services on the dense Pacific Highway corridor and connecting with the historic regional center of Lane Cove, which is in an area underserved by rail.
P1nx: (Orange) Castle Hill Extension: (Female Factory through Baulkham Hills to Castle Hill)
Buses have not received the attention they deserve. We could do much better with buses than we actually do, but elite projection (elites can imagine themselves riding trains but not buses) is hard to overcome, so buses are regarded as inferior to trains for reasons that mostly have to do with how we use buses in the system, rather than the technology itself. [Recognising that the ride quality of buses on streets is not as high as trains on exclusive rights-of-way]. This vision for Rapid Buses is not T-Ways (on exclusive rights-of-way) everywhere, but more akin to the Arterial Bus Rapid Transit services that Metro Transit in Minnesota provides. (You can see a nice video about the service). In short, buses are the workhorse of the public transport system, and need more attention to make them as excellent as possible.
Principles
Gridded: We should design a Grid-like network, so that people can get to their destination with at most one-transfer. I don’t think this actually holds because of an inconvenient river. All of the proposed V-Lines stop south of the Parramatta River. Rail service north of the River is good, the B-Line already exists (which can be thought of as V-01), and the proposed LRT extension above are fairly comprehensive, so the areas north of Sydney Harbour and the Parramatta River get more H-Lines and no V-Lines. The existing Railroad rights-of-way present another barrier, as there are few surface street crossings of the lines, those are taken advantage of where possible, but wind up distorting the network from an idealised grid. (See Bambul’s post for a similar idea with a slightly different implementation or my earlier version focusing on Inner Sydney.)
Directness: We should minimise bus circuity for these routes (there can be other minor routes after these are fixed, I won’t bother with that here), so that travelers are not riding all over creation as the bus operator seeks a few extra passengers or to meet some arbitrary standard about distance to the nearest bus stop.
Complementarity: Routes should complement not compete with existing Train, Metro, LRT, BRT routes. So even when there are bridges over the Parramatta River, they are already served by existing rail lines, so the principle of complementarity reduces the ability to provided continuous V-Line services from the south to the north, relying instead on transfers. This proposal assumes everything under construction and budgeted will be built (major Motorways, Metros, etc.)
Feasibility: The cost should relatively minimal (achieving High Return on Investment), so essentially no new roads, bridges, and so on, are built for the bus routes, and a minimum number for the proposed LRT links.
The services are gridded, so they are divided into H-Lines and V-Lines. Specific lines are itemised below.
H-Lines
Shown in pale blue, East-West or Horizontal (“H”) Lines (always even numbers, major lines end in 0, lowest numbers in the North, highest in the South)
H10: Parramatta – Eastwood – Macquarie Park
H20: Chatswood – Cremorne – Mosman – Manley
H30: Crows Nest – Cremorne – Mosman – Taronga
H40: Guildford – Lidcombe – Olympic Park – North Strathfield – Concord – Canada Bay – Drummoyne – Birkenhead
V85: Parramatta – Merrylands – Chester Hill to Panania
V95: East Hills – Villawood – Fairfield – Westmead
Physical geography is always a factor. Because of the width of Sydney compared to the height, there are more V-Lines than H-Lines. Also, based on the principle of non-redundancy, more vertical bus routes are provided, as there are more existing and under construction horizontal train lines.
Note this service stops in Liverpool, as the areas west are not developed yet. We have ideas about that, and I am currently doing work in the area, so will abstain.
If any of these H- or V-Lines are successful, they can of course be upgraded, and as the physical rail network changes, one expects these lines will evolve as well, taking advantage of the flexibility offered by buses. I have not conducted a formal accessibility analysis of this FAST network proposal, but if you are interested in funding something, find me.
This vision is essential if public and active transport are to be the preferred choice for most Sydneysiders, which is critical for achieving the environmental goals of eliminating CO2 emissions.
Train riders have to get to stations somehow. This is often referred to as the “first mile” or “last mile” problem. There are many technical solutions to help travellers get from home to the station and back, ranging from cars to electronic scooters, but most people use a much older technology, their feet, to get from A to B. What is seldom considered is access to the train platform itself.
Stations are not points but places. They occupy a large area. A person walking at average speed takes about two minutes to walk from one end of a full-length eight-car train to the other.
Often platforms have a single access point on one side of the station, which makes it more difficult for people on the other side of the station to get to the platform. Passengers may need to almost circumnavigate the station to get to the platform. At an average walking speed, the extra distance they must backtrack adds up to six minutes per trip each way, our research has found.
Imagine being so unlucky to have an extra 12 minutes of travel time every day if you take the train. You might be tempted to drive instead.
Illustration of worst-case scenario, traveler lives west of the station with an East Platform and works East of a station with a West Platform, adding 6 minutes of travel each way, 12 minutes per day.
The table below shows the extra travel time in minutes depending on platform locations and access points for a traveller’s origin and destination. The average time for such a one-sided configuration of train stations is 3.25 minutes each way.
Work
East
West
Live
Platform
East
West
East
West
East
East
0
4
4
2
West
4
4
6
2
West
East
2
6
4
4
West
2
4
4
0
Table 1: Additional Travel Time Depending on Origin and Destination Residence and Workplace Location vis-a-vis Platform Location.
While this example is hypothetical, it is drawn from experience in Sydney, where 44 of 178 train stations have only a single side entrance.
So what impact will a second entrance have?
We examined those stations and access to their platforms: how many people lived within 5, 10 and 15 minutes of the station platform, considering actual entrance location, and how many jobs were within 5, 10 and 15 minutes of the platform. Using existing ridership data from Opal cards, we estimated a model that related the passenger entry and exit flows at each station to that station’s accessibility.
Accessibility at train stations across Sydney.Author provided
We sketched a second entrance at those 44 stations and measured accessibility again. It’s now higher, as having two entrances instead of one means more people can reach the platform in the same time. We then estimated the increase in ridership from the model due to the improved accessibility, assuming no change in population or employment.
Over all 44 stations, total morning peak period entries increased by 5%. But some stations benefit a lot, and others not at all, so prioritisation of investments matters.
It will be no surprise to locals that Erskineville station comes out on top with a nearly 35% increase. While many of the new apartment-dwelling residents west of the station make the extra hike every day, even more would catch the train if there were a convenient entrance.
Other top 10 stations include: Bankstown, Newtown, Villawood, Redfern, Burwood, Sydneham, Caringbah, Meadowbank and Penshurst. Planning is already under way to improve Redfern station.
While this result considers existing development, adding a second entrance can make new transit-oriented development that much more valuable. This is because it will likely increase activity on the previously less accessible side of the station, as the example of Erskineville shows below.
Author provided
Other considerations include accessibility for people who cannot use staircases, as many of the stations are older and will require lifts. The prospects of park-and-ride lots, the costs of construction, the presence of nearby stations, and site feasibility also play into final decisions.
We evaluated the ratio of jobs to workers from Smart Card Data at the transit station level in Beijing.
A year-to-year evolutionary analysis of job to worker ratios was conducted at the transit station level.
We classify general cases of steepening and flattening job-worker dynamics.
The paper finds that only temporary balance appears around a few stations in Beijing.
Job-worker ratios tend to be steepening rather than flattening from 2011 to 2015.
Abstract
As a megacity, Beijing has experienced traffic congestion, unaffordable housing issues and jobs-housing imbalance. Recent decades have seen policies and projects aiming at decentralizing urban structure and job-worker patterns, such as subway network expansion, the suburbanization of housing and firms. But it is unclear whether these changes produced a more balanced spatial configuration of jobs and workers. To answer this question, this paper evaluated the ratio of jobs to workers from Smart Card Data at the transit station level and offered a longitudinal study for regular transit commuters. The method identifies the most preferred station around each commuter’s workpalce and home location from individual smart datasets according to their travel regularity, then the amounts of jobs and workers around each station are estimated. A year-to-year evolution of job to worker ratios at the station level is conducted. We classify general cases of steepening and flattening job-worker dynamics, and they can be used in the study of other cities. The paper finds that (1) only temporary balance appears around a few stations; (2) job-worker ratios tend to be steepening rather than flattening, influencing commute patterns; (3) the polycentric configuration of Beijing can be seen from the spatial pattern of job centers identified.
This paper describes the connection between stop spacing and person-weighted accessibility for a transit route. Population distribution is assumed to be uniform along the line, but at each station, demand drops with distance from the station. The study reveals that neither short nor excessive stop spacings are efficient in providing accessibility. For the configuration of each transit route, an optimum stop spacing exists that maximizes accessibility. Parameters including transit vehicle acceleration, deceleration, top speed, dwell time, and pedestrian walking speed affect level of accessibility achiev- able, and differ in their effect on accessibility results. The findings provide an anchor of reference both for the planning of future transit systems, and for transit operators to make operational changes to system design parameters that improve accessibility in a cost-effective manner. The study technically justifies the “rule of thumb” in setting different stop spacings for metro, streetcars, and other different transit services. Different types of transit vary in their ability to provide accessibility, slower moving streetcar (tram) type urban rails are inherently disadvantaged in that respect. Thus the type of transit service to be built should be of particular concern, if the transit is to effectively serve its intended population.
Why does Australia have higher transit use than the US?
This question has two major explanations: Driving is harder and using transit is easier. On the road side, as my colleague Wes Marshall says: “Policy-related differences include stronger and more extensive enforcement programs [in Australia], restrictive licensing programs, and higher driving costs.”
In places like central Sydney, narrower lanes and expensive parking also make driving a burden. The Australian motorway system is less developed than the US interstate highway system, though the government is funding major new urban motorways in Australia (e.g. WestConnex in Sydney).
Transit benefits because higher population and employment density (especially around transit stations ) within cities compared to most US cities (as well as a more urban population overall) reduces access time to and from transit and enables higher frequency service to serve the demand. The train, bus, and tram systems in Australian cities are relatively high frequency and fairly reliable, with all-day service. While the systems are imperfect (as any daily commuter will tell you) they are orders of magnitude better than most of the US.
Transit service is a positive feedback system (The Mohring Effect, named for Transport Economist Herb Mohring who first identified it). More demand calls for more service, the additional service is in the form of additional buses and trains running at different times than the original service, reducing schedule delay, making transit more convenient, calling for more service. This works two ways, so transit cutbacks increase headways (decrease frequency) making transit less convenient, lowering demand, resulting in more cutbacks.
From the 1920s when tram (streetcar) use peaked (notably excepting the spike during World War II) through the 1960s there was a process of Bustitution — substitution of buses for trams. Many cities around the world (notably excepting places like Melbourne, Toronto, San Francisco, and especially selected cities in Europe) instead of paying the costs of recapitalising their tram systems, opted to convert tram lines to buses that had much lower capital costs.
In the US, there is a grand conspiracy theory, about how this came about. While most of the conspiracy theory is over-blown, there was some evil doing, as is the wont of people infected with greed (better known as people). In Minneapolis the people who converted the streetcar to buses went to jail, not for the conversion but for crimes like bribing state legislators and giving kickbacks. In Brisbane, the Paddington tram depot caught (were set) on fire as bus conversion was being debated, answering the question.
In general, the reality is much more market-rational. Electric trams were first deployed in the late 1880s, so by 1950 the service was over 60 years old. Trams needed a major capital infusion to keep operating. That capital infusion was not forthcoming from fares; in the US trams had clearly been in decline for the better part of thirty years. It was a hard call for cities not to replace their trams with buses. The private sector, which financed trams initially, were unwilling to finance it again, leaving it to local governments to come up with money for the trams (or not, as it turned out).
So most cities became tramless. Those cities were losing transit riders before the conversion and lost more after the conversion. It’s a vicious cycle.
The new Light Rail mode (See Appendix) in North America kicked off with Edmonton (1978), San Diego (1981), and Portland (1986). In retrospect, many people regret the process of bustitution, and cities that later reinstalled LRT systems would with perfect foresight likely have kept their tram lines going and recapitalised them. Note that the actual coverage of these new system is much smaller than the historical trams, most tram lines were removed in most North American cites, as in Sydney.
Wikipedia reports the farebox recovery is lower in Australia than US cities, which implies a higher public subsidy. (I am not convinced there aren’t methodological differences in accounting here, but it is worth noting).
Why is Australia’s transit use rising when the US is falling?
A train that showed up at Sydney’s Central Station
The second question is more difficult. One response is that fuel prices remain higher in Australia. Another is that there has been more investment in transit, including more frequent service and continuous improvements to stations and vehicles. Third, Australian cities have recently rolled out smart cards (Opal in NSW) like the Oyster Card in London, and along with it pricing reforms to reduce the fare penalty for transfers, which has significantly boosted use of transit.
Australia does some other things differently from the US. Among them is increased use of contracting out to private firms to provide service. (This is not universal yet, but is growing.) This is also done in the UK and most of Europe, but not very much in the US. This has effects on costs and perception and unionization. The contractors are for-profit businesses aligned with the idea of higher ridership, so support for transit in Australia is bipartisan, while in the US, transit is considered a Democrat issue in most places, and Republicans are often actively hostile as it is not their constituents (or only support transit to their suburban districts with high cost, low value commuter rail systems like Northstar in Minnesota).
While transit in the US is perpetually in “crisis” (to listen to its supporters), in Australia (and Canada and Europe) it is a normal part of society that is widely used, and doesn’t have the same stigma associated with it.
What should the public sector do to increase ridership?
I asked on Twitter “Would restoring Sydney Trams to a network resembling that at their maximum extent (291 km), similar in scope to Melbourne’s Tram network today, be a good use of public resources?”
The response was
50% Yes, Benefits >> Costs
27% No, Benefits << Costs
23% Maybe, Benefits ~= Costs
Looking at Sydney the densities are much higher here than in most North American cites, aside from New York, San Francisco, Chicago. I previously examined the existing and planned trams in Sydney.
Because they are widely used, they have a strong constituency for their betterment, and government is responsive in expanding the system.
Convincing existing some-time riders to ride more is far easier than going from 0 to 1 as Peter Thiel might say.
I think early ridership gains come from going deep rather than going wide. A large fraction of the US still lives in areas designed around transit (basically pre-1920 America), including city cores and streetcar and commuter rail suburbs. Residents sometimes use transit now. These places are much easier to serve because the land use in conducive to transit, the densities are high enough and the networks are oriented for transit access and service.
Good, relatively cost-effective service like Minnesota’s arterial BRT (bus rapid transit ) (MetroTransit’s A Line, eg) have shown large ridership and user satisfaction gains with low investment. The system is made more efficient with things like payment before boarding, and all-door boarding, reducing time at stops and increasing driver and bus productivity.
The aim should be to serve users better, not help non-users by reducing congestion, which may be a happy byproduct, any more than building roads aims to reduce transit crowding.
References:
Wesley E. Marshall (2018) “Understanding international road safety disparities: Why is Australia so much safer than the United States?” Accident Analysis and Prevention 111. 251–265
Mohring, H.(1972). “Optimization and Scale Economies in Urban Bus Transportation,” American Economic Review, 591-604.
Appendix: Streetcars and Trams vs. LRT
The difference between Light Rail and older streetcars or trams is primarily, but not entirely, one of branding. Anyone who says there is a clear formal difference that people abide hasn’t gotten out much. Different cities use the same words to mean different things. Still there are differences in degree:
Streetcars or trams often share right-of-way in the street, while Light Rail often has a mostly exclusive right-of-way with at-grade crossings, but either system can be operated either way.
Light Rail vehicles tend to be wider with higher capacity and longer with higher capacity, its longer vehicle is a heavier vehicle: Light Rail is not light, it’s only light with respect to commuter trains; it’s not light with respect to buses, cars, or people. Light sounds airy and like it should be less expensive, but it’s a only a little less expensive.
Transit vehicles and services form a continuum, you can operate streetcars in exclusive tunnels as in Boston. Both LRT and streetcars differ from commuter trains but it’s a continuum in regard to that as well.
Alexandria is a neighbourhood (and once an independent municipality) south of Sydney on the new City and Southwest Metro Line, which is slated to open in 2024. There are stations at Sydenham to the west and at Waterloo on the east but nothing in-between for Alexandria. The area has a population density of 1540/km^2, which is plausible for public transport, and is going up with new construction. This is the second longest stretch on the under construction Metro line without a station (only Epping to Cherrybrook is longer).
Should Alexandria get a stop? On the one hand, more stops increases running time for all on-board passengers. On the other, it lowers access costs for those locally who otherwise would need to walk a longer distance or take a bus.
Let’s consider a hypothetical: If we say an extra 1 minute for the stop, it is adding the number of passengers traveling through the station each day (~30,000) x 1 minute each. (It is hard to quickly track down current ridership numbers, I have seen estimates of about 40,000 per day on the T3 line, but not all of them will go past this point .. the Metro will increase capacity, and may increase ridership, and development will drive in that direction anyway.) So if it were to Board 3000 people who saved 5 minutes each way (boarding and alighting) in travel cost compared to their next best alternative, the total amount of time lost would be equivalent to the time saved. (It’s of course more complicated than this, as existing riders may switch stations as well, and changing mode has implications at both ends of trips.) I am pulling these number out of thin air to illustrate the logic, an actual demand analysis could estimate their actual values (recognizing the inaccuracies of demand forecasting). It is not obvious that it would pencil out from a time-savings perspective, i.e. adding 3000 boardings and 3000 alightings to the station per day is a significant amount, even with the new development. This analysis does not even consider the cost of the additional stop, which is far from free. Nevertheless, sometimes the need of the one outweigh the needs of the many.
If it gets a stop where would it be?
Map with indicative Alexandria Metro Station
Given the map and assuming the line’s location does not move, I would say at the southern edge of Alexandria, somewhere along Sydney Park, probably at Mitchell Road so it can be near the huge new Park Sydney development (technically in Erskineville). It might make sense to be connected to the St. Peter’s Station for ease of transfers.
It is also worth noting that Alexandria is going to feel the brunt of the WestConnex exit to Euston Road / McEvoy at the St. Peters Interchange.
The local neighbourhood group, ARAG, is lobbying for a station, as they should. The reluctance to an Alexandria Station they have heard from government agencies is the lack of redevelopable land in Alexandria to justify a station. That is, new stations are built to serve undeveloped sites rather than to serve proven demand. The same reasoning was given to route the line to Waterloo rather than University of Sydney in the first place. This seems strange on both accounts. The University of Sydney is growing like gangbusters, and even if existing homes were off-limits, there is plenty of redevelopable industrial land in Alexandria, mostly to the east of the circle on the map I drew. But in any case, the test should be in providing accessibility, and existing land use has as much right to that as greenfield (or brownfield) development. If the tax structure and regulatory system were rational (for instance, used a land value tax), it should not matter whether the new riders were from existing or new developments.
This study conducts an in-depth analysis to alert policymakers and practitioners to erroneous results in the positive impacts of transit use on health measures. We explore the correlation of transit use and accessibility by transit and walking with self-reported general health, Body Mass Index (BMI), and height. We develop a series of linear regression and binary logit models. We also depict the coefficient-p-value-sample-size chart, and conduct the effect size analysis to scrutinize the practically significant impacts of transit use and accessibility on health measures. The results indicate transit use and accessibility by transit and walking are significantly associated with general health and BMI. However, they are practically insignificant, and the power of the large sample in our particular case causes the statistically insignificant variable to become significant. At a deeper level, a 1% increase in transit use at the county level diminishes the BMI by only 0.0037% on average. The elasticity of transit use also demonstrates that every 1% increase in transit use would escalate the chance of having excellent or very good general health by 0.0003%. We show there is a thin line between false positive and true negative results. We alert both researchers and practitioners to the dangerous pitfalls deriving from the power of large samples and the weakness of p-values. Building the results on just statistical significance and sign of the parameter of interest is worthless, unless the magnitude of effect size is carefully quantified post analysis.
On Sunday June 12 I took the A-Line from Snelling and University to 46th Street Station, switched buses, took the A-Line to Rosedale, switched buses, and took the A-Line to Snelling and University Avenue again, making a full circuit on 3 buses. Smelling that new bus smell, it smells like victory.
Stand tall traveler information pylon.
The waiting at the stops is better than your conventional post in the dirt stop. There is a full gamut of stop features, including shelter, accurate NextBus information, pre-payment mechanism, and benches to sit. Everything you would want except maybe trees. Pre-pay is nice and saves time boarding, though I didn’t get to take advantage of it since it was free anyway today, and I was (and would always be) a free transfer, but it would still save time for a free transfer. Interestingly, the A-Line stations provide more information than the LRT stations. More importantly the real-time information was working on day one.
For the opening weekend, Metro Transit had a full complement of assistants waiting at each station, who were helpful, but mostly not busy. Some (maybe a third) of the stations were just passed by (if there are no passengers boarding and alighting, no need to stop, unlike a train).
The boarding process is mostly smooth. All-door boarding is good, people seemed to distribute themselves across all the doors. The low floor buses made it easy for a lady using a walker to board.
Pay Before Boarding
However bikes on buses take too long. While it seems a nice feature to allow bikes on buses, it added 38 seconds to the stop (see video). I saw 3 of these on my round trip, this was the slowest. I don’t mean to pick on the bicyclist, he is following the rules and doing what is allowed. Now maybe with experience this gets down to 20 seconds. If it were only 30 seconds for the bicyclists, who cares, but when it is 30 seconds multiplied by the number of people on board, this gets expensive. For a fullish bus of 50 people that is 25 person minutes of delay. Granted no one cares on a Sunday morning, and it was far from full, but during peak times this can be a considerable deal.
Oddly, A-Line buses can cross the Green Line without stopping and the driver looking both ways, but must stop and loop before proceeding at the Blue Line.
Not having exclusive right-of-way seems to be the major criticism from national transit critics, saying it doesn’t deserve the rank of BRT. However neither Snelling Avenue nor Ford Parkway are typically congested enough to justify an exclusive lane for only 8 buses an hour (6 x A-Line, 2 x 84). A few stretches have some other routes as well, but still not enough. It would be nice to see some transit signal pre-emption action happening though. We stopped twice in both directions at Snelling and I-94.
Not all of the 84 signs are up-to-date in the way they should be. Some still indicate the route number, but do not provide maps. Some still record the 84 as a high-frequency route. One assumes those will come down shortly. As far as I could tell, all 84 stops have notices about change in frequency. Still, some folks have not gotten the message despite the hard work of Metro Transit on this. I saw (sadly too quickly to film) a guy flipping the bird to the A-Line bus not stopping at an old 84 stop a few blocks north of Snelling Avenue, and not at a new A-Line station. I think he and his friends/family expected the bus to stop.
The buses seemed (I did not document against posted schedules) to be running fast (It’s Sunday with little traffic) and so when they arrive at their end, the next bus is still waiting there with a few minutes before departure. There did not seem to be any holds along the route to ensure schedule adherence, only at the ends. This makes sense, but means that this is a turn-up-and-go service more than a scheduled service. But at worst, you wait 10 minutes.
Nice transit map, but I missed No Smoking station somehow.
In addition to that new bus smell, the buses have Wi-Fi. Good. However, you have to accept terms and conditions each time. Unfortunate that it cannot remember that I did this already and auto-log me on.
The buses have nice on-board “press to signal” stops, although I miss the cable which rings a bell because I miss the great story as to why it’s a cable. That cable, back in horsecar days, used to be connected to the driver’s arm, so you were basically tugging on the driver to get him to stop, since he couldn’t hear the passengers through the cacophony and when he was outside a carriage and passengers were inside.
The ride quality was better than most local buses. Snelling has recently been reconstructed and these are new buses. I did not do the full Hicksian analysis, so cannot say that it was smoother than LRT (it surely wasn’t), but it was clearly better than most buses.
The route at Rosedale is far less circuitous than the 87 Bus I have complained about before, it was in and out about as well as could be expected.
I expect the A-Line will hit ridership targets quickly. While some of the riders were lookie-loos like me (A lady in front of me was Instagramming about the A-Line, after Instagramming about Northern Spark), other passengers seemed to be engaging in their daily business, aware of course it wasn’t the 84, but not doing anything different. I am guessing an average of 20 persons boarding per run (for the 2 full runs) (I didn’t actually count), which is 240 boardings per hour or maybe 3000 per day, for a Sunday. The projected 3500 for a weekday seems well within grasp. I look forward to published ridership numbers.
Most of the traffic appears to be on the middle part of the route, from Snelling just north of University down to Highland Park. Very few people were transfers to the Blue Line LRT or alighting at Rosedale. Even the Snelling and University passengers were not mostly transfers to the Green Line today.
There are more grocery stores on the A-Line than the Green or Blue Lines. Lunds & Byerlys and Whole Foods had patrons riding the bus on Sunday. There are more movie theaters on the A-Line than the Green or Blue Lines. Someone counted 4 Dairy Queens. Which is to say, the A-Line, which runs past neighborhood retail (as well as a regional mall) better serves people on their daily non-work activities, rather than being designed foremost as a commuter route. Given the declining roles of downtowns in American life, this is important.
I have driven this route (in pieces) dozens of times. It feels different on the bus. I have ridden through other cities on buses in similarly scaled neighborhoods and they feel like cities. This has always felt like the suburbs before. It’s a bit more urban now, with stuff along the way that is perceived through the eyes of a bus passenger differently than through the eyes of a car driver (or passenger). In part it’s the idea I might get out and walk around and see something interesting, which I would do in a city I was visiting, but I would never do in St. Paul. The A-Line gives confidence that I can get off and easily find my way back in a way that the 84 bus did not. I however did not do that this trip, since it was about the bus, not the neighborhood. But it is something I imagine doing, which is progress.
This is about the best that can be done with buses short of an exclusive right-of-way and full electrification, and that would just be overkill here.
In short, the A-Line is the best new investment Metro Transit has done since I have moved here. As a new capital investment, it is not as high quality as some routes with exclusive right-of-way, but it finds the optimal trade-off between quality and cost, maximizing benefit/cost and minimizing dollars spent per rider. This is important. It means more things can be done. It’s just too bad this wasn’t opened sooner. For the important high-frequency corridors, the sooner they can be upgraded the better. This corridor nicely serves existing demand, and can induce additional transit travel from neighbors. It also nicely connects the upcoming Ford plant redevelopment, with the Blue and Green lines, without any additional expenditures. While low volume/low-frequency bus routes are going to be further disrupted in the coming decade, high volume/high-frequency routes should be upgrade. There may actually come a time when this is a 5 minute route, at least during peak times, and with some help from transit signal priority, it beats the new mobility companies (e.g. Uber and Lyft) and AVs on-demand in terms of waiting time and convenience.
The A-Line is the first in a proposed indeterminate series of ALPHABET routes. (I have backronymed ALPHABET to mean Arterial Lines Producing High Accessibility By Efficient Transit). Now you might say, but that means there can be only 26 routes. I disagree, after the Z-Line, MetroTransit can start to use Greek letters, which adds 24 (although many are similar, but think about the Ψ-Line (it knows you are coming) ), and then to emoticons. Imagine how happy everyone will be on the :)-Line.
More importantly, St. Paul is missing an opportunity with their quixotic quest for streetcars on 7th, and could have had the B-Line under construction already were they not continuing to dither. In fact it has been truncated on the official map. Instead, it appears the C-Line is next in queue. Since the letters in the alphabet don’t appear to have any geographical relationship to the lines they represent, there is no reason for them to be chronological either I suppose.
8:55 Arrive at Green Line station (WestGate)
9:05 Arrive at Green Line station (Snelling)
9:14 Board A-Line Bus SB (Snelling and University)
9:35 Board A-Line Bus NB (46th St. Station)
10:10 Alight/Board A-Line Bus SB (Rosedale Center Station)
10:29 Board Green Line train (Snelling). Round Trip Time 75 minutes.
You must be logged in to post a comment.