Contra the headline, the article itself is not bad.
My quotes:
Professor Levinson estimated the current infrastructure should be able to handle a market share above 20 per cent, given most cars will be charged at home.
‘This is not going to be a sudden crisis,’ he said.
…
Professor David Levinson, an American civil engineer and transportation analyst at the University of Sydney, said the federal government’s lack of commitment to the electric vehicle market was ‘disappointing’.
‘Given the potential abundance of renewables in Australia, this is disappointing, but the government has made few efforts to accelerate EV uptake with tax breaks or higher fuel or petrol car purchase taxes, and the previous government was talking down EVs as recently as the 2019 campaign,’ he said of Mr Morrison’s tenure.
…
Professor Levinson said he expects lower cost EVs to enter the Australian market in the coming years.
‘As the price of batteries drop, we would expect lower cost car-sized EVs to enter the market in Australia as they have in other countries. That will naturally increase market uptake,’ he said.
‘Inflation will raise the cost of everything, but the relative higher price of EVs should diminish, and Bloomberg expects a crossover point in a few years when EVs are less expensive that petrol cars.’
…
Professor Levinson believes Australia need to do more to combat the country’s ‘large share of carbon emissions’ and commit to electrifying its roads.
‘Converting new cars purchases to electric takes out tailpipe emissions. But old cars will remain on the road for years,’ he told Daily Mail Australia.
‘It will take about 20 years to turn over nearly the entire fleet from the point that almost all new cars are EVs (around 2030), without government incentives or mandates.’
There are 2600 petrol stations in New South Wales (https://www.epa.nsw.gov.au/~/media/EPA/Corporate%20Site/resources/clm/2008552ServStations.ashx) So long as electric vehicle range is similar to petrol vehicle range, we would expect that public charging stations should have a similar number. But EVs have the advantage that they can slow charge at many people’s houses, so there might not need to be quite as many.
EVs should be defined to include e-bikes, small golf cart sized vehicles, as well as replacements for people’s cars and Utes. So there is already a wide range in price, but yes, as the price of batteries drop, we would expect lower cost car-sized EVs to enter the market in Australia as they have in other countries. (The Kia Soul EV is available in Norway, e.g., though still more expensive than the petrol version in Australia ) And that will naturally increase market uptake. (Inflation will raise the cost of everything, but the relative higher price of EVs should diminish, and Bloomberg expects a crossover point in a few years when EVs are less expensive that petrol cars).
The infrastructure should be able to handle a market share above 20% EVs, most EVs will charge at home, most EV homes will have rooftop solar, and most houses will have batteries. Particularly as more storage for renewables comes online (for example, Snowy 2 begins to come online in 2025), this is not going to be a sudden crisis.
The transition to EVs which will happen despite government policies not because of them. (Though government could make this easier or harder). As the transition continues demand for fuel will drop, so there should be plenty of market supply available, but a government serious about Net Zero would tax fuel at a higher rate than present to lower demand.
So your planet has global warming.[1] Venus says “Welcome to the club!” CO2 pollution [2] not only destroys the environment and adds to remediation costs, the traditional air pollution that comes with it shortens your life. While this undoubtedly annoys you as a human being, it could be worse; your planet might not have excess carbon dioxide emissions or pollution because no one wants to be there (hello Mars). Still, it would be great to have a thriving planet without pollution. People could do more things over their longer life.
Pollution like congestion can be thought of as a queueing problem. There is a demand side (production of pollution) and a supply side (the ability (capacity) of the environment to process pollutants). When the production of a pollutant exceeds the ability of the environment to process, the pollutant builds up, e.g. there is more CO2 in the atmosphere because humans produce more CO2 than nature can absorb in the short run. So like traffic in a queue, CO2 in the atmosphere rises. This is a straight-forward physical process.
From Wikipedia. Description: This figure shows the history of atmospheric carbon dioxide concentrations as directly measured at Mauna Loa, Hawaii since 1958. This curve is known as the Keeling curve, and is an essential piece of evidence of the man-made increases in greenhouse gases that are believed to be the cause of global warming. The longest such record exists at Mauna Loa, but these measurements have been independently confirmed at many other sites around the world. The annual fluctuation in carbon dioxide is caused by seasonal variations in carbon dioxide uptake by land plants. Since many more forests are concentrated in the Northern Hemisphere, more carbon dioxide is removed from the atmosphere during Northern Hemisphere summer than Southern Hemisphere summer. This annual cycle is shown in the inset figure by taking the average concentration for each month across all measured years. The red curve shows the average monthly concentrations, and blue curve is a smoothed trend. The carbon dioxide data is measured as the mole fraction in dry air. This dataset constitutes the longest record of direct measurements of CO2 in the atmosphere (data for 2016 are preliminary). Date 11 January 2017 Source Own work. Data from Dr. Pieter Tans, NOAA/ESRL and Dr. Ralph Keeling, Scripps Institution of Oceanography.When the CO2 in the atmosphere rises, the heat of the planet rises with it. This is also a straight-forward physical process, noted by Arrhenius in the 19th century. Now like transport and behavioral systems, environmental systems are complex, so even though the direction is clear, the rate of change is hard to ascertain, and there are many mitigating or exacerbating feedbacks. Still more CO2 emissions means more heat.
Some of that gets absorbed in trees or the ocean, or is not measured, but the temperature will rise. If the rate of human production of excess CO2 falls to zero, the excess CO2 in the atmosphere will eventually be absorbed by nature, the queue will be discharged. But nature will have been changed by the whole process. For as long as we don’t have net zero or net negative carbon emissions, the queue of unabsorbed pollution will continue to lengthen.
There are a number of proffered solutions out there. Pollution is, in principle, a mostly solvable problem, even if no fast-growing planet has, to the best of our knowledge, fully solved it.
This article outlines ways that pollution could be solved. Some of these are dumb, many are good, one is great.
Capacity [Bio-Engineering] – Perhaps the most obvious, ‘common sense’, solution when demand (pollution) is in excess of supply is to expand capacity. This is what we do with most things if we can. If our house is too small, we make it bigger. If our wallet can’t hold all of our cash and ID cards, we get a bigger one. If the internet is too slow, we add capacity. In roads, this usually means adding lanes to existing roads. Perhaps we could plant more trees to absorb more carbon pollution. Unfortunately, there is not enough space for enough trees to offset the problem. Maybe algae in the oceans, but that sure seems like that would have adverse consequences.
Capacity [Geo-Engineering] – Besides planting trees, perhaps we could do something faster, typically called geo-engineering, using the power of chemistry to capture CO2 gas or change CO2 gas into something more benign. Wikipedia lists a bunch of inter-related topics:
The first problem with this set of solutions is that it is potentially expensive. Adding to the ability of the planet to absorb pollution is difficult. Unlike transport, people have only done this kind of geo-engineering speculatively. So there is a huge risk associated with some of these techniques, especially the more speculative ocean fertilization. But you know, “what could go wrong?” For the less expensive methods, the question is whether they can scale to be significant contributors.
Solar Radiation Management. Just deal with the heat, ignore the carbon. As Wikipedia says: “Solar radiation management (SRM)[4][34] techniques would seek to reduce sunlight absorbed (ultra-violet, near infra-red and visible). This would be achieved by deflecting sunlight away from the Earth, or by increasing the reflectivity (albedo) of the atmosphere or the Earth’s surface.” This sounds like a terrible idea to me, but if the CO2 is bad only because of the rising heat, it could be an interim solution. Volcanoes have similar effects. The problem is cold summers, and one could easily imagine this going badly for crops (and thus humans). Wikipedia has a series of articles …
The first set of strategies are basically supply side. But pollution problems are caused by a mismatch of supply (ability to absorb) and demand (production). So let’s turn to demand. The main sources of demand are transport, industry, agriculture, and residential, with the electric power sector serving these indirectly.
The basic equation for emissions in the transport sector is given by:
Emissions = Liters/KM x Carbon/Liter x Vehicle KM Traveled.
If cars had better fuel consumption, less emissions per fuel consumed, or traveled less, there would be less emissions. All three of these things can be worked on together.
The first few are technological shifts, the latter will require behavioral change.
Bio-fuels – If all of our fuel was from recently deceased plant matter, rather than oil (long deceased plant matter), and those plants were replanted, net CO2 from burning fuels would be about zero (assuming the equipment used to harvest and transport the bio-fuels also used bio-fuels, (like turtles, all the way down)). The advantage is that the energy density of liquid fuels is generally better than batteries. The disadvantage is the large amount of area needed for bio-fuels, which will compete with food agriculture for the best farmland. This is likely to be especially important for aviation.
Controls Better pollution control devices like the catalytic converter for Internal Combustion Engine vehicles have significantly reduced tailpipe emissions of EPA criteria pollutants. Something similar could be done for CO2 emissions. So the same amount of liters would somehow produce fewer tons of carbon. The difficulty here is chemistry. The gasoline is ultimately burned, producing CO2. Perhaps it can be captured and stored, or catalyzed into some other what we know believe to be innocuous byproduct. Arguably this is a supply side method, but I class it as demand side here as the aim is to reduce the amount of CO2 emitted, not improve the capacity to deal with emitted CO2.
Improve fuel economy in transport. Better fuel economy for Internal Combustion Engine vehicles has significantly reduced fuel use, and thus CO2, and has plenty of generally good side effects for society, like reduced air pollution and less dependence of oil more generally. Increased energy efficiency overall throughout the economy is feasible.
Electrify the automobile fleet, switch the energy source for automobiles from fossil fuels to electricity powered by renewable sources (e.g. solar and wind and hydro and nuclear) or use fuel cells to transform the number of Liters/KM to zero.
Reduce (or end) automobile use. This works on the third part of the equation. Transport is about 1/3 of CO2 pollution, plus or minus. My earlier post “21 Strategies to Solve Congestion“, (which this not-coincidentally resembles), outlines how to reduce automobile demand, which is a large or the largest source of CO2 pollution. So long as cars continue to rely on the Internal Combustion Engine (in some form for a few more decades yet), reducing automobile demand and gasoline consumption will be critical to reducing CO2. There are many reasons to reduce automobile use, pollution among them. It turns out that biking is more efficient than driving. It turns out, more surprisingly, that eBikes are more efficient than bikes (after netting out the extra energy for the extra food for the extra calories burned biking).
Non-transport
The same basic logic applies outside the transport sector. Emissions depends on energy consumption, carbon content, and activity.
Conserve. Reduce electricity and natural gas consumption at home and work. Use LED light bulbs. Insulate your buildings. As Jimmy Carter suggested, put on a sweater and set the thermostat cooler in the winter. Strip naked and set the thermostat higher in the summer (though he didn’t say it, he may have thought it). Recycle. There are a thousand or more ways to reduce energy consumption.
Make production processes more energy efficient. This is related to conservation, in that it reduces consumption, but at a much bigger and holistic scale, and examines the process by which outcomes are achieved.
Use Renewable Energy in the Electricity Sector. Electricity is about 1/3 of greenhouse gas emissions in the US. Transformation from burning coal is well underway, and adoption of renewable energy sources like solar, wind, and hydro power, among others, are the best way to get this sector down to zero net CO2 emissions over the coming decades. There is a large amount of fixed capacity (sunk costs) out there now, so the transition will take some time.
Reduce industrial energy demand by closing industry – Industry is about 1/5 of CO2 pollution. Perhaps intuitively, if we shut down polluting industries, we reduce pollution. To the extent we want the thing the industry intends to pollute (aside from the pollution), this might be problematic. If we want it closed, but want the goods, the factory will pop up elsewhere with fewer environmental strictures.
Social Solutions
Exhortion – Tell people they shouldn’t pollute because it is bad for themselves, or society, or will condemn them in perpetuity to an unpleasant afterlife. Guilt can get you a little bit of benefit, but as evidenced by the state of the world, can only go so far. This is really a means to one of the other ways of actually reducing pollution.
Rationing – Give people and firms pollution credits, the right to emit a certain amount of CO2 per year. Reduce that credit annually. Allow them to trade credits for money. If it were cost effective to reduce pollution, they would do so to sell credits. If it were not, they could buy credits. When people talk about cap and trade, that is a form of rationing.
Pricing – Charge people and firms for the amount of pollution they generate and they will generate less pollution.
How do polluters reduce pollution?This is the best part. Each individual or firm decides for themselves whether or how to consume or pollute less, what production processes to change, when to substitute clean power for dirty. With pricing, polluters will see the air, which is now treated as an unregulated commons as a valuable resource, and if they increase throughput per unit of carbon, they will save money. They will try to be more efficient about managing the use of the existing clean air.
Isn’t this another tax?This is the second best part. It raises money by discouraging people from doing something that we don’t want them to do. Other high taxes on things that we do want them to do (like work) can be lowered. Done properly, this is revenue neutral.
Can this work?This is the third best part. There are many proposed strategies to implement pricing. Obviously this has been politically difficult, or it would already be widespread. Carbon taxes are the simplest intervention, and we already do this in some places (12% of the world’s Carbon is already taxed). Since it is assessed for industries rather than on individuals, it has a low cost of collection. For instance rather than metering each car, petroleum from refineries or fuel wholesalers can be taxed. This accelerates the uptake of electric vehicles, which should on the net be a good thing.
There are undoubtedly some other solutions out there not discussed here, and lots of details overlooked.
Pricing is the answer and you know that for sure
Pricing is a flower
You got to let it, you gotta let it grow
This post is basically a rewrite of my popular post about a different externality: congestion: “21 Strategies to Solve Congestion“. Perhaps we might call this `CO2gestion’.
Yes, I know some people don’t accept CO2 as “pollution” and prefer “emissions.” Since it is above the ability of the environment to process in the short term, it imposes harmful or dangerous effects, and so it is pollution, even if it is a natural product. All pollutants are fine in small enough amounts, and everything is horrible in too great amounts.
In the early 2000s, Hybrid-Electric Vehicles (HEVs) started to become visible (especially in California), overcoming the range concerns as electric power would be used on city streets, and the ICE could recharge the battery, at somewhat higher sales price than conventional vehicles. As shown in Figure 5.1, US sales are generally rising, but are still small for Hybrids and Electric Vehicles. Sales outside the US are similarly low. From Levinson and Krizek (2015) The End of Traffic and the Future of Transport. Figure 5.1 Source: Electric Drive Transportation Association (2015) Electric Drive Sales Dashboard .
The price of fuel increased sharply in the run-up to the Great Recession, as shown in Figure 3.8; this certainly discouraged car travel. Interestingly, it also reduced car crashes by more than the reduction in distance traveled, which the research team attributed to worse than average drivers (especially the young) being more likely to be priced off the road. How much less travel is there because of increases in the price of gasoline? For every 100% increase in the price of gas, there is a 5% decrease in gasoline consumption (which correlates to driving in the short run, in the long run there is also a shift in vehicle fuel economy, and the elasticity is higher). From Levinson and Krizek (2015) The End of Traffic and the Future of Transport. Figure 3.8 Source: US Energy Information Administration.
Consult most news sources these days – this one included – when it comes to poor air quality, and what you’re likely to uncover is that more often than not in the blame-game, traffic – more specifically, tailpipe emissions – is named. Obviously, not the only source of pollutants, nevertheless, the portion of pollutants coming from traffic – and transportation, more universally – is sizable.
Falling gasoline prices: What effect is this having on both motor vehicle and public transit use and, by extension, what, if any, impact has the decline had and having on the quality of our air.
He cites my earlier post
David Levinson in “Mount Transit, Mount Auto, Mount Next,” at the Transportationist Blog, clues us in.
“In the US, we have seen a great struggle play out in the twentieth century between what David Jones calls Mass Motorization and Mass Transit. The conflict between the modes continues to this day, and has become a morality play in the culture wars. While they mostly serve different markets, they compete for users, and roadspace, and funding, and the hearts and minds of travelers. They are competing on old turf though, …, both modes appear to be in decline, transit for decades, the decline of the auto-highway-system is just beginning.”
This is an interesting revelation, because what this tells me is pollution from both sources should be becoming less and less, that is, as long as the mode-split-relationship (and other influencing factors) has not significantly varied.
He doesn’t outright state a final conclusion to the question, though he says:
But, then I noticed something interesting. The overall trend was positive between 1961 and 2007, taxed gallons going from 60.006 billion in 1961 to 177.394 billion in 2007. After the Great Recession hit just subsequent to this, the number of gallons of gasoline taxed dropped to 171.229 billion in 2008, dropping even more to 168.551 billion in 2009, rose again in 2010 to 171.101 billion, falling to 168.722 billion in 2011. Only if there are fewer less-fuel-efficient vehicles on the road coupled with greater use of cleaner-burning fuels and/or less traffic on the roads coupled with greater use of cleaner-burning fuels – along with the dip in the amount of gallons of gasoline taxed, am I able to conclude that emissions emanating from motor vehicles are also fewer. That’s a good sign even if the number of motor vehicles on America’s roadways experiences level or upward growth.
I subscribe and listen to the Seminars About Long Term Thinking Podcast by the Long Now Foundation.
So I was surprised and pleased to find the most recent episode featured Jesse Ausubel, (previously mentioned on this blog, and who has a lobster named for him) discussing fascinating trends in dematerialization, and how the environment is recovering (mostly) even without concerted public policy.
The blurb says:
In the field of environmental progress the conflict between anecdote and statistics is so flagrant that most public understanding on the subject is upside down. We worry about the wrong things, fail to worry about the right things, and fail to acknowledge and expand the things that are going well.
For decades at Rockefeller University Jesse Ausubel has assembled global data and trends showing that humanity may be entering an exceptionally Green century. The most important trend is “land-sparing”—freeing up ever more land for nature thanks to agricultural efficiency and urbanization. Ausubel notes that we are now probably at “peak farmland“ (so long as we don’t pursue the folly of biofuels). Forests are coming back everywhere in the temperate zones and in many tropical areas, helped by replacing wild logging with tree plantations. Human population is leveling rapidly and we are now probably at “peak children.” Our energy sources continue to “decarbonize,” and a long-term “dematerialization” trend is reducing the physical load of civilization’s metabolism.
In the ocean, however, market hunting for fish remains highly destructive, even though aquaculture and mariculture are taking off some of the pressure. In this area, as in the others, rigorous science and inventive technology are leading the way to the mutual flourishing of humanity and nature.
At my conference on the future of methane in Fort Worth last November, I found out about a documentary called Switch, about the future of energy in the US. I finally got around to getting and watching. It is highly recommended for those interested in the subject.
It is largely non-partisan (though the protagonist is a geologist) and covers all of the important energy types in a serious and engaging way, with a bit more meat and less chrome than the typical PBS science show. You have to request a copy from the website, it is not available on iTunes or Netflix yet.
I don’t agree with everything. I think it overestimates how long the switchover to renewables + nuclear being the largest share of energy will take. It does this because it underestimates future technology advances — looking more linearly and less exponentially/logistically in terms of technology development and deployment. Similarly it underestimates the ability of larger inter-connected networks to mitigate reliability/availability problems from solar and wind, and advances in storage of various types. I don’t think this change will be overnight, but I hope it will be sooner than the 50 years the film estimates. The cost curves on solar and wind are getting very competitive, and the more interest they have, the more investment they will get.
In short it is an electric scooter with a fast-swappable battery. They propose to have a network of swapping stations. We saw this attempted with Better Place, which did not turn out well, as well as the early days of EV taxis in New York with the lead acid trust at the turn of the last century..
Location, Location, Location
“Being in Minnesota, currently with a -25F wind chill, I am not sure smart scooters will work everywhere,” said David Levinson, a transportation analyst and professor at the University of Minnesota.
However, “in the markets where they do work, battery swapping is good idea, and six seconds would be very fast,” he told TechNewsWorld.
Gogoro’s big challenge will be deploying its network of swapping stations, “since if they are not near where you are already going, they may not be of much use,” Levinson said.
“In other words, unless GoStations are as ubiquitous as gas stations, swapping will remain inconvenient for many potential users,” he pointed out.
“We will need to see a shipping product before we can really determine whether and how well this works,” added Levinson, “but I wish them good luck and hope they can find a viable deployment path with upfront capital expenses and sell their product.”
The traffic congestion you face is caused by other people. Those people did not think about the delay they imposed on you when they chose to travel. They didn’t even know about you, since they were already on the road before you were. They are ahead of you in the traffic stream.
Similarly as a driver, you, completely oblivious, impose congestion on those who follow. You never met them. You have no opportunity to stop and apologize, or even say excuse me, since that would cause even more congestion.
Economists have long had a solution to this problem. It is called road pricing. Almost all economists support this in principal. Yet, it is implemented almost nowhere (Singapore is the best example, followed by Stockholm and London, but London does not vary prices by time of day except that it is on during the day and not at night), indicating there must be some problems with the way it has been presented, or the cure (road pricing) is perceived as worse than the disease (congestion).
Problem 1: The collection of revenue. Historically this was at tollbooths, which were sources of delay rather than source of delay reduction, so people would naturally be skeptical that putting tollbooths everywhere would be an improvement. Technology now permits toll collection at full speed, using in-vehicle transponders or license plate recognition.
Problem 2: Administrative costs. Putting a toll collection gantry out on a single facility is one thing. It’s not especially cheap, and must be more expensive than gas taxes. Putting them everywhere is expensive. Using current electronic toll collection technologies that depend on readers and facility-based collection points does not scale to the system as a whole. Localized toll collection cannot in general solve the widespread congestion problem.
Problem 3 : Privacy and tracking. Surely the government will be monitoring whatever transponder or GPS device they put in the car. I have seen Law and Order as much as the next person, and I know what the police and prosecutors already do with EZ-Pass. Even if there are technical solutions (using a pre-paid unregistered cash card rather than a credit card) no-one will believe that the authorities aren’t tracking. The entire NSA scandal just makes people suspicious. While in my view privacy is mostly dead (and of your own doing so long as you carry a communications device with you or pay with credit cards), it is even deader on public roads, even without road pricing (since we have cameras, police have cameras, traffic managers have cameras, and sousveillance is everywhere). But people are still nervous, and we need to recognize that.
Problem 4: Implementability. Rolling this out and turning on the switch is a big shock to the system. Transportation is inherently a conservative field, people are comfortable with slow change. So deploying 200 million transponder devices and millions of readers across the network before turning them on was at best a foreboding task, and in all likelihood terribly unwise. What if it didn’t work properly?
Problem 5: Fairness. Tolling people is often perceived as unfair (which usually does not take in to account the distributional inequities in the existing road financing system). Everyone has the same amount of time, but rich people have more money. There are lots of solutions to this problem, but in the end, the fear is at least some individuals would be better off without the change.
Opportunity 1: Electric Vehicles are coming. In some sense they are already here. While their market share of hybrids is still low (still less than 3% of all new sales) and Battery and Plug-in EVs (still less than 1% of new sales), the latter category is growing rapidly.
US Electric Vehicle Market Shares
Now extrapolation is dangerous, but we do have claims from some of those in the EV industry, namely Elon Musk of Tesla about achieving market share of about 13% by 2020. Further we have the history of technologies which show an S-shaped life-cycle dynamic. The tricky part is determining the ultimate market share (which I will assume to be 100%), and the rate of growth. Existing data allows us to estimate the rate of growth. Combining Hybrids and EVs, Figure 2 shows the best fit logistic (life-cycle) curve. A market share of 50% of new vehicles sold is achieved in 2022 or so. This is 8 years away. Eight years is a long time. Eight years ago there were no iPhones or Androids.
US Electric Vehicle Market Shares Extrapolated
The main constraints have been limited consumer demand due to range anxiety and issues of charging location and speed. So we need to assume (1) The cars will get better over time, (2) Batteries will get better over time, (3) Electricity will get cheaper over time.
I believe all three of these are certain, the only question is the speed with which these things occur, and the degree to which batteries get better.
The cars will become better. Already Tesla produces the best car (Model S) in the US according to Consumers Reports. It is of course pricey. On the other hand, you need to discount the price some because you will not need gas ($3/gallon at 15000 miles per year at 30 mpg, which is about $1500, or $15000 over the life of the car). The price will also drop with true mass production.
You can’t beat free: Many have understood for a while (see this 2007 post e.g., and this from earlier in 2014) the solar cost curve is bending and will become cheaper than alternative sources of energy soon.
Soon is basically here. My dad in Arizona has solar panels. There is a house on my commute with solar panels.
Solar energy panels do have a fixed cost, but the variable cost per unit of electricity drops to approximately zero. This means you are replacing the cost of gasoline with about nothing, if you have solar panels on your roof generating more electricity than you would otherwise use. There is the alternative of selling the excess back to the grid, but one imagines once everyone starts doing this, the grid isn’t going to pay much, if anything for excess power. We have heard “Too Cheap to Meter” before, about Nuclear. Unfortunately we did not implement that successfully. Solar is a much more grassroots rather than top-down process, and more likely to succeed.
The difficulty is energy storage. Batteries are getting better, doubling energy density about every 10 years (or 20) – which is of course a big difference. So even if solar is cheaper than the grid, the sun isn’t always on (you know, the rotation of the earth etc.), so batteries are required at home as well in the car.
But we don’t need batteries to store a year’s worth of energy, we need them to store enough to be competitive with cars, i.e. to be good enough and cheaper, so that they can either be charged fast or swapped out fast. MP3s don’t have the fidelity of analog music, but they were good enough. Cell phones don’t have the sound quality of land lines, but they were good enough.
From a transportation funding perspective, the most important implication is that EVs don’t pay gas taxes. If they become widespread, there will be a not just the slow decline of gas tax revenue we see already due to peak travel and better fuel economy, but an actual crash.
Opportunity 2: Congestion remains a problem
Question: If pizza were free, how much pizza would be available at dinner time in the dorm?
Answer: None.
Question: So when roads appear free, how much surplus road space do you have during rush hour?
Answer: None.
Congestion should not be a surprise, it is what you get when you underprice a good. While it is not getting especially worse in most of the US, it is not getting especially better either. Time is still money, and this problem will remain until we actively do something about.
Opportunity 3: Still roads require some funding.
Roads don’t plow themselves. Roads and bridges don’t repair themselves. Roads don’t repave themselves. Bridges don’t erect themselves. The money for these things must come from somewhere, and people (and their machines) must be paid to do these things. The best source for these funds are the people who directly benefit from the existence of these public works – the users themselves. Our system in the US is a combination of funding from users directly, and non-user beneficiaries, as well as the general public (which usually fall into the first two categories).
Opportunity 4: Traffic is self-organizing.
While the theoretically perfect, first best, solution would charge a unique price for each link for each time of day, that is far more detail than we actually need to have an effective system. We trade-off between the additional efficiency from more time and place specificity against the additional administrative complexity and decrease consumer acceptance from such a fine-grained system. Most priced systems are much simpler than the ideal because of these practical concerns.
Fortunately, to a first-order approximation, we don’t really need to know which road people are traveling on, just the time. Wardrop’s Principle of User Equilibrium (not strictly true, but good enough for the moment) says all used routes have the same travel time. Which is to say, when traveling between A and B at a given time, if there are multiple routes you might use, their travel times are equal, and if one is higher, you won’t use it. And this holds for everyone. Traffic spreads out in a regular way to exploit available routes. So while there might be some advantages to tolling one route more than another (because their marginal costs differ), that introduces a lot of complexity for a relatively small system-wide gain. My estimates of the spatial Price of Anarchy on the Twin Cities network is that there is only a small loss (less than 2%) due to letting people route themselves rather than the Central Planner allocation. In short, the main problem is temporal (peaking) rather than spatial (routing).
Proposal
Taxi-Meter: We want to keep the structure as simple as possible. Imagine an in-vehicle taxi-meter, with a per-minute charge. We can have as many different rates as we want, but we should start with a few (more than zero, otherwise it is not going to affect time of day people travel at all, more than one if you want to avoid too much boundary effect of people not leaving until the rate changes. I suggest three different prices for starters. Once people get used to the idea, the rates can be adjusted. It is much easier to go from 3 rates to 4 or 6 than to go from zero rates to 1 or 2.
Rate Structure: For instance, imagine a price structure like this:
Peak 6 hours per day (~50% of current traffic) each traveler pays [T]
Shoulder of peak discount (~25% of traffic) (50% discount) each travelers pays [0.5T]
Offpeak discount (~25% of traffic) (90% discount) each traveler pays [0.1T]
Second, we establish the base rate for the peak times, and everything else is a discount (think about movie theaters and restaurants, which have the matinee and early bird special) rather than having an unwelcome “surge” pricing phenomenon. This is I think a more positive framing. Also since the non-peak rates are lower, the fraction can remain fixed, and there is only one base toll rate for policy to regularly adjust, and then a fraction of that rate associated with day-parts, which is adjusted less frequently.
Note, we are only tracking when you travel, not where you travel, and perhaps your residence (since rates will vary by jurisdiction of residence).
System Members: We want this to be as fair as possible. Fairness means lots of things to lots of people. However having rich people pay more rather than poor people pay more is a fairer way to start. At this stage of history, early adopters like people buying brand new EVs undoubtedly have above average incomes (though I don’t have actual statistics to verify this). Making everyone pay for roads, instead of just people with gasoline powered cars, is also fairer.
We want to phase this in to avoid a big-bang implementation disaster (like the botched roll-out of Obamacare). Fortunately for this system, most people don’t have EVs now. Also fortunately, we anticipate many people will in the coming decades.
So I suggest the membership in this system should be automatic (starting the model year after next) for all new EVs, Hybrid EVs, other Alternative Fuel Vehicles sold. All such vehicles would get rebate on general tolls, local property taxes, other general revenue sources of road funding, as well as any gas tax paid as well (such as for Hybrids). This gives the automakers more than a year to implement the device into a small fraction of their cars. It ensure bugs and difficulties are discovered early and inconvenience only a small portion of the population. It gives the federal government a year to set up a revenue collection system that can ramp up over time to a larger share of the fleet, and one imagines, eventually to the entire fleet, either as EVs and other Alternative Fuel Vehicles come to dominate, or as it is imposed at some point on all new cars.
As more and more vehicles become non-gas powered, this system membership grows and it becomes more and more effective.
Opt-ins: Gasoline powered cars can voluntarily opt-in to this system, which for many travelers would be a cost savings and provide incentives that might be easily exploited to the betterment of all. We could further allow an opt-in location tracking, which would give a discount in exchange for rates which varied locally.
Surplus: If there is a surplus at the end of the year, above the members’ share for the cost of roads and rebating for other taxes, every member of the system gets a dividend. A check in the mail, that they can use for whatever they want.
An Illustration
Currently 1 hour of travel at 30 mpg and 30 mph uses 1 gallon of gas, which is about $0.50 of state+federal gas tax [depending on where you are].
Note: This should be about $1.00 to $1.50 to cover the cost of all road infrastructure (not including externalities), depending on how you count. Other taxes cover a large share of road expenses, including property taxes, vehicle sales taxes, and so on.
Assuming share of travel did not change by daypart, average revenue per vehicle hour would be about:
0.50*$2.50+0.25*$1.25+0.25*$0.25=$1.62
We would expect that share of travel would change by daypart, so that the average revenue per vehicle would be lower, and more in-line with system costs. Actual elasticity of demand with respect to the toll rates is an empirical question that can only be firmly established with experience, though we can make some estimates.
You must be logged in to post a comment.